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Chapter 1

Introduction

This thesis concerns interpretability, a concept in logic describing how math-
ematical theories relate to one another. In particular it is meant to clarify
the notion that two theories are talking about the same thing, even though
superficially they may appear to be very different. The central questions I
address here are: Can the interpretability relation be made precise? And if
so, is there a simple deductive framework to reason about it? The answer to
both these questions, perhaps surprisingly, will turn out to be “yes.”

Interpretations are ubiquitous in mathematics. Problems are often solved
in a generalized or entirely new settings. Interpretations are implicitly used
to justify that we are still talking about the same problem and hence that the
proof transfers. This is especially true when the new setting is dramatically
different from the original one. We can prove propositions of Euclidean
geometry (for example that two triangles with three equal sides are similar)
by proving their translations in the coordinate plane of analytic geometry.
The grounds for this approach is that there exists an interpretation between
the two theories. Points are translated into ordered pairs of real numbers,
and geometric objects such as ellipses into sets of ordered pairs. Even though
Euclidean points and pairs of real numbers are very different things, the
interpretation allows us to treat them mathematically as if they were the
same. One remarkable application is Alfred Tarski’s proof of the consistency
and decidability of Euclidean geometry by demonstrating the decidability of
real closed fields together with a translation of geometric statements into the
language of real closed fields.

Mathematical logic can formalize the admittedly imprecise notions of in-
terpretability just described. One theory, such as set theory, interprets an-
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4 CHAPTER 1. INTRODUCTION

other, such as number theory, when there exists a map sending the symbols
of the first theory to the symbols of the second theory respecting logical
form such that the translations of all theorems of the first are theorems of
the second. An interpretation can be said to embed a logical image of the
base theory into the target theory. Interpretability then formalizes that one
theory is at least as strong as another, in the same way that provability
formalizes that one set of statements is a proof of a conclusion.

The concept of interpretability has figured prominently in the founda-
tions of mathematics. At the end of the eighteenth century, Gottlob Frege
sought to describe arithmetic in purely logical terms. He thought that he
showed something philosophically meaningful in his reduction of arithmetic
to logic: the nature of numbers is the nature of logic, and that the ultimate
justification for arithmetic truths is precisely the justification that we have
for logic. In modern terms we can say Frege was trying to show that logic
interprets arithmetic. David Hilbert, a few decades later, hoped to show that
large portions of mathematics were “ideal,” useful for streamlining proofs,
but ultimately translatable into purely finitary number-theoretic statements.
His chief concern was the epistemic problem of knowledge of infinite objects.
The question could be defused though by showing that infinite objects were
not necessary in mathematics. Moreover the instrumentally useful of ideal
objects in mathematics could be justified by a translation of ideal elements
into finitary ones. At the heart of both Frege’s and Hilbert’s foundational
projects was the idea that if one can show that a theory is interpretable
in a second theory, then the first theory is (mathematically, epistemolog-
ically, metaphysically) reduced to the second. In this way they sought a
philosophical grip on suspect theories like analysis by interpreting them in a
philosophically sound theory like finitary arithmetic.

Recently the study of interpretability for its own sake has yielded several
important contributions to mathematical logic. Interpretability is a proper
generalization of the formal provability predicate. To say that we can prove a
statement is equivalent to saying that its negation interprets a contradiction.
It is no surprise then that interpretability has helped illuminate Kurt Gödel’s
celebrated 1931 Incompleteness Theorems. Interpretability turns out to be
one of the best frameworks to study incompleteness phenomena. The relation
allows us to arrange naturally arising theories in a hierarchy, where one theory
is above a second theory if and only if the second theory can be interpreted
into the first theory. In this hierarchy, all complete theories are arranged
below all incomplete theories. By studying theories near the threshold point
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of incompleteness, we can probe what features theories have that make them
expressive enough so that they cannot prove everything expressible in their
language, that is, incomplete.

Interpretability allows us to study much stronger theories as well. We
have that if a theory can be interpreted into another, then the consistency
of the interpreting theory implies the consistency of the interpreted theory.
Working with the assumption that relative consistency is a suitable mea-
sure of strength, interpretability is also then a reliable indicator of theory
strength. The interpretability hierarchy today is used to gauge the strength
of newly proposed axiomatic systems that include large cardinal axioms.
These additional assumptions provide theories the strength to decide state-
ments not settled by standard axiomatizations of set theory. This ordering
disregards differences that arise from presentation rather than content, and
so is an ordering “up to isomorphism.” Indeed this approach allows logic,
as other areas of mathematics successfully do, to deal with general structure
rather than particular appearances, providing the means to prove general
statements about its objects of study. The philosophical payoff of the in-
terpretability hierarchy then is that we can measure, in a rigorous way, the
strength of these newly proposed axioms.

Nonetheless important foundational questions about interpretability re-
main unanswered. For instance, it has only been an empirical observation
that every naturally occurring formal theory so far studied is linearly or-
dered by the hierarchy of interpretability. We currently have no principled
way to say why this is so. One productive line of research has been towards
a modal logic of interpretability. This is the search for a relatively simple
logic that captures propositional reasoning about interpretability in. Ques-
tions include: Is interpretability between theories transitive? Can there be
so-called Orey statements φ such that a theory interprets itself plus φ while
also interpreting itself plus not φ? When dealing with interpretability over
Peano Arithmetic, the answer to both will be positive. A particular modal
system ILM answers these and many other related questions. In fact ILM
will be seen to be the modal logic of interpretability, exactly capturing the
correct propositional statements involving interpretability.

At first glance this reduction seems impossible. To proof-theoretically
formalize the interpretability relation involves an astronomically large num-
ber of symbols, while the modal system can be written in just nine axioms
and two rules of inference, a mere few hundred symbols. Yet it can be done.
In this thesis, I will describe how the transmutation is carried out.
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Chapter 1 is this introduction. Chapter 2 introduces interpretability and
the necessary metamathematical preliminaries. Chapter 3 defines the modal
system ILM and provides a sound and complete semantics for the logic.
Chapter 4 brings together interpretability with the modal system. In this fi-
nal chapter, I present the main proof of this work, the arithmetical soundness
and completeness of ILM with respect to interpretability over PA.



Chapter 2

Preliminaries

In this chapter, we will introduce a number of preliminaries that will be
needed in the presentation to follow. In particular, we will introduce both
the historical and modern notions of interpretability, along with basic results
about formalized metamathematics and formalized model theory.

2.1 Original Notion of Interpretability

In this section, we will define the notions of interpretability and weak inter-
pretability as they first appeared in the literature in [10]. We closely follow
the presentation in that work. We begin with the concept of a possible
definition, introduced the following example:

Example 1. Suppose that we have a theory T in a language LT which does
not contain a certain non-logical constant, say the binary predicate < (the
less-than equal sign). A possible definition of < in T is any sentence of the
following form:

∀x∀y(x < y ↔ Φ) (2.1)

where Φ is a formula of T . Of course (2.1) is not a formula T , as we assumed
T does not contain the constant <. But it is a formula, in fact a sentence,
of every extension of T that contains < as a constant. In this way we have
defined < for extensions of T in terms of a formula expressible in T .

Definition. Let T1 and T2 be any two theories in languages L1 and L2.
First assume that the two languages share no non-logical constants. Then
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8 CHAPTER 2. PRELIMINARIES

T1 interprets T2 if we can extend T1 by including in its set of valid sentences
some possible definitions of all of the non-logical constants of T2 so that the
resulting extension is also an extension of T2. Equivalently we say that T2 is
interpretable in T1. More precisely, T1 interprets T2 if and only if there is a
theory T and a set of sentences D such that:

1. T is a common extension of T1 and T2 and every constant of T is either
a constant of T1 or of T2;

2. D is a recursive set of sentences which are all valid in T and which are
possible definitions in T1 of the non-logical constants of T2;

3. Every non-logical constant of T2 occurs in exactly one sentence of D;

4. Every valid sentence (in T ) is derivable in T from T1 along with the set
D.

In general, when T1 and T2 share some non-logical constants, we first
replace the non-logical constants of T2 with new constants not occurring in
T1 (different symbols by different symbols) to obtain T ′2. This is done so that
T2 and T ′2 have no differences in their structures beyond the ways they are
presented. Then if T ′2 is interpretable in T1, we say that T2 is interpretable
in T1 as well.

Definition. A theory T1 weakly interprets T2 if there is some consistent
extension of T1 which has the same constants as T1 and interprets T2.

Definition. Let T be a theory and P be a one-place predicate of T . For
every formula Φ of T replace every subformula of the form ∀xΨ or ∃xΨ by
the expressions:

∀x(Px→ Ψ) (2.2)

∃x(Px ∧Ψ) (2.3)

The resulting formula ΦP is said to be the relativization of Φ to P . If we
fix P and for each Φ in T take its relativization ΦP , then the collection we
obtain is the new theory T P , the relativization of T to P . The set of all
constants of T P will be all the constants of T and of the predicate P . We
stipulate that a sentence is valid in T P if and only if it is derivable from the
set of sentences ΦP obtained by relativizing the set of valid sentences Φ of T
by P .
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Definition. Let T1 and T2 be any two theories. Then T1 relatively interprets,
or weakly relatively interprets T2 if and only if there is a predicate P that
does not occur in T2 and T1 interprets, or weakly interprets T P2 in the sense
of Definitions (2.1) and (2.1).

A relative interpretation can be thought of as an interpretation in which
an interpretation is provided for not only of the non-logical constants but
also for quantifiers appearing in formulas.

Definition. A theory T is called decidable if the set of all its valid sentences
is recursive, otherwise it is called undecidable. A undecidable theory T is
called essentially undecidable if every consistent extension of T that has the
same constants as T is also undecidable.

These notions of interpretability were historically introduced to prove
the decidability or undecidability of some theory. In particular, we can show
that a theory is undecidable if we can interpret an already known undecid-
able theory in it. But for some theories providing an interpretation or weak
interpretation in the usual sense is either difficult or impossible. There are
many cases though in which a theory T2 can easily be show to be essentially
undecidable and relatively interpretable or weakly relatively interpretable
in a given theory T1. We have results that relative and weak relative in-
terpretations also provide us our desired decidability results. Hence these
notions greatly expand our ability to reason about the undecidability of the-
ories. We will now turn to a closer study of what we introduced as relative
interpretability. First though, we will need to introduce some facts about
formalizing mathematics.

2.2 Peano Arithmetic: the Setting

Peano Arithmetic (PA) is a first-order theory intended to formalize number
theory. It has the non-logical symbols 0, S,+,× for zero, successor, addition,
and multiplication respectively. The terms (or collection of symbols) ‘0’,
‘S(0)’, ‘S(S(0))’, . . . are called numerals. The nth numeral will be denoted
by n.

By ω we denote the set of natural numbers, also identifiable with the first
infinite ordinal. The structure N whose underlying set is ω and equipped
with the operations successor, addition, and multiplication will be called the
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standard model (or intended interpretation) of PA. The interpretation of the
numeral n in this model is the natural number n.

We call any finite sequence of symbols from the alphabet of PA a syntactic
object. Formulas, terms, and proofs are all syntactic objects. With every
syntactic object t we bijectively associate in an effective way a numeral ptq
called the Gödel number of t.

Definition. The T -formula α(x1, . . . , xk) defines the number-theoretic rela-
tion R if for all n1, . . . nk ∈ ω,

N |= α(n1, . . . ,nk) ⇐⇒ R(n1, . . . , nk) (2.4)

The T -formula α(x1, . . . , xk) numerates the number-theoretic relation R
if for all n1, . . . nk ∈ ω,

T ` α(n1, . . . ,nk) ⇐⇒ R(n1, . . . , nk) (2.5)

The T -formula α(x1, . . . , xk) binumerates the number-theoretic relation R if
for all n1, . . . nk ∈ ω, if it numerates R and in addition,

T ` ¬α(n1, . . . ,nk) ⇐⇒ ¬R(n1, . . . , nk) (2.6)

In the following we state without proof many results which we assume
the reader to have had some exposure to. Many of these proofs, including
the next theorem, can be found in [5].

Binumerability Theorem 2. For every primitive recursive number theo-
retic relation R(x1, . . . , xk), there is a PA-formula α(x1, . . . , xk) which binu-
merates R.

In the proof of Theorem 2, the formula α is explicitly constructed from
the number-theoretic relation R. Any formula so obtained from a primitive
recursive relation will be called a primitive recursive formula.

Definition. We can group formulas into classes designated as either Σn or
Πn. These are defined recursively as follows:

(i) Σ0 = Π0 = the class of formulas with bounded quantification (also
notated ∆0),

(ii) Σ0
n+1 is the class of all formulas obtained by prefixing some number of

existential quantifiers in front of a Π1-formula, and

(iii) Π0
n+1 is the class of all formulas obtained by prefixing some number of

universal quantifiers in front of a Σ1-formula.
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2.3 Modern Interpretability

This section details the modern notion of interpretability that will be studied
through the rest of this paper. The first full treatment appeared in [4], where
the idea of relative interpretability (defined above) was studied in greater
detail. The presentation of this section follows [1] and [8].

A theory (unless otherwise noted) will denote an axiomatic theory for-
mulated in first-order logic with equality in a finite language and with a
recursively enumerable set of axioms. What we have in mind for an interpre-
tation is a map i of the language of S to the language of T so that i commutes
with boolean connectives, and if S ` φ, then T ` i(φ). If such an interpre-
tation exists, we will sometimes write S ≤ T . For example, if S ` φ∨ ψ and
S ≤ T , then T ` i(φ)∨ i(ψ). From this it follows if T ` S, then S ≤ T . This
map can be thought of as an embedding of a logical image of the the theory
S into the theory T . Given this syntactic definition in mind, we now state a
model-theoretic, semantic version that we will find easier to work with.

Definition. An interpretation f of a LS-theory S in into a LT -theory T is a
set of LT -formulas which define, for every modelM of T , the universe, set of
relations (except equality), and graphs of the functions of a LS-modelMf of
S. ThenMf is called the interpreted structure or the interpreted model. We
stipulate that the equality symbol will always be interpreted as the identity
relation. The underlying set of Mf will be { a ∈ M | M |= δ(a) }, where
δ(x) is the formula of the interpretation defining the universe.

An interpretation will induce a map i which assigns to every LS formula
φ(x1, . . . , xn) a LT formula φ(x1, . . . , xn)f (with the same free variables) so
that for all a1, . . . , an ∈Mf ,

Mf |= φ(a1, . . . , an)⇔M |= φ(a1, . . . , an)f (2.7)

2.4 Formalized Metamathematics

Diagonal Lemma 3. For every formula φ(~x, y) there is a formula α(~x) such
that PA ` ∀~x(α(~x)↔ φ(~x, pαq)).

The formula guaranteed by Lemma 3 is defined relative to φ in a primitive
recursive way. In particular, if φ is primitive recursive, then α will at worst
be provably equivalent to a primitive recursive formula.
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Given an arithmetically axiomatized theory T in the language of PA, we
can associate to T a proof predicate. This is a formula PrfT (x, y) that is a
formalization of the statement that ‘x is a proof of y in T ’.

Note that PrfT (x, y) depends not only on the set of axioms of T , but also
on the way they are presented, namely the formula τ(x) that defines that set
of axioms. A less ambiguous notation would then be PrfT,τ (x, y). For brevity
by τ we will denote both the theory and a formula presenting its axioms.

The formula Prτ (x) is defined as ∃x(Prf(x, y)) and so is a formalization
of ‘y is a theorem of τ ’. The formula Con(τ) is defined as ¬Prτ (p0 = 1q)
and so is a formalization of ‘τ is consistent’.

Notation. If T is a theory and φ is a sentence, let T + φ denote adding φ as
an axiom to T .

Notation. Let T � n be the subtheory of T axiomatized by the axioms of T
with Gödel numbers < n. In particular let Tk stand for T � k. If σ(x) is a
formula, let σ(x) � y stand for the formula σ(x)∧x < y. In particular if σ(x)
defines a theory T , then σ(x) � n will define the theory Tn. If T is a finite
theory, let [T ](x) be the canonical formula defining T obtained by taking the
disjunction of all formulas of the form x = n where n is the Gödel number
of an axiom of T .

Provable Σ1-Completeness of PA 4. PA ` ‘for every φ, if φ is a true
Σ1-sentence, then PA ` φ’.

Provable Σn-Soundness of PAk 5. PA ` “for every k, n, PA proves ‘for
every Σn-sentence φ, if PAk ` φ, then φ is true’ ”.

In other words Theorem 5 states that PA proves, for any n, the Σn-
soundness of every finite fragment of itself. This result will sometimes be
called ‘Reflection’. From this also follows:

Corollary 6. For all k, PA proves the consistency of PAk.

Gödel’s Completeness Theorem states that every consistent theory has a
model. This can be stated in PA in the following way:

Formalized Gödel’s Completeness Theorem 7. Let T be a theory that
contains PA, and S a first-order theory. Suppose that T ` Con(τ(x)), where
τ(x) numerates S in T .1 Then T interprets S.

1i.e. T ` τ(x) ⇐⇒ R(x), where R(x) here holds if and only if x is the Gödel number
of a theorem of S.
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Here, the formalized version of the original hypothesis: ‘S is consistent’
becomes ‘the PA-extension T proves Con(τ)’, where Con(τ) is the formal-
ized statement of S’s consistency relative to a presentation τ(x) of S. The
formalized version of the original conclusion: ‘S has a model’ becomes ‘T
interprets S’. One way then to think about an interpretation is as a syntac-
tical procedure to build in the interpreting theory a formalized model of the
interpreted theory.

It is a classic result that every recursively enumerable set can be defined
by a Σ1 formula, and conversely that every Σ1 formula defines a recursively
enumerable set. A theorem by William Craig states that every theory that
has a recursively enumerable set of axioms also has a primitive recursive
set of axioms. Soloman Feferman proved the following formalized version of
Craig’s result:

Formalized Craig’s Theorem 8. Let ξ(x) be a Σ1-formula. Then there is
a primitive recursive formula α(x) such that PA ` Prξ(x)↔ Prα(x).

The following theorem of Stephen Orey will be important for this presen-
tation. It equates interpretability with the interpreting theory proving the
consistency of all finite sub-theories of the interpreted theory:

Orey’s Theorem 9. Let T be a theory that contains PA, and let S be a
theory with a recursively enumerable set of axioms. If T ` Con(S ′) for every
finite sub-theory S ′ of S, then T interprets S.

Proof. (⇒) By Theorem 8, we can assume that S is axiomatized by a prim-
itive recursive formula σ0(x). Extend this to σ(x), a primitive recursive
formula that binumerates the theory S in PA. Then the hypothesis of the
theorem can be restated as: ∀k(T ` Con(σ � k)). Now let:

σ∗(x) = σ(x) ∧ Con(σ � x+ 1) (2.8)

This is done so σ∗(x) defines (in ω) the consistent subtheories of S of the
form σ(x) � y. By a formalization in PA of Gödel’s Compactness Theorem,
we get:

PA ` Con(σ∗(x)) (2.9)

From the Theorem’s hypothesis and equation (2.8), if T is consistent, then
σ∗(x) binumerates (and hence numerates) S in T . Then equation (2.9), and
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Theorem 7 give the desired result that T interprets S. On the other hand
in T is inconsistent, then T interprets any theory, including S, and we are
done.

(⇐) Suppose T interprets S. We must show that for any finite subtheory
S ′ of S, T ` Con(S ′). First we obtain a finite subtheory T ′ of T so that
T ′ interprets S ′ by taking the inverse of the interpretation map on all of
S ′’s axioms (remember that an interpretation is a bijection between S and
some subtheory of T , possibly T itself). It is a fact that for finitely axiom-
atized theories, the interpretability relation can be formalized in PA as a
Σ1-assertion. By Theorem 4:

PA ` ‘T ′ interprets S ′’ (2.10)

As T ′ interprets S ′ the interpretation of anything (including a contradiction)
provable in S ′ is provable in T ′. Because the interpretation of ⊥ is always
⊥, if S ′ is inconsistent, then T ′ is inconsistent. Stating the contrapositive of
this in PA we get:

PA ` Con([T ′])→ Con([S ′]) (2.11)

As T extends PA, by Corollary 6, T ` Con([T ′]). Combining this with
equation (2.11) gives the desired conclusion T ` Con([S ′]), where [S ′] is the
canonical formula defining the finitely axiomatizable theory S ′.

2.5 Model Theory in PA

The second-order theory ACA0 can formalize some model theoretic notions.
Moreover, it can be shown that ACA0 is a conservative extension of PA.
This means that if we have a formula in the language of PA, whatever ACA0

proves can be proved in PA as well. Hence, we can use ACA0 as a tool to
prove that things hold in PA. The advantage is that we can formalize more
complicated notions in ACA0, hopefully yielding quicker proofs in ACA0 of
statements of PA.

Definition. The language of ACA0 properly extends PA. In addition to
the usual numerical variables x, y, z, . . . of PA, set variables X, Y, Z, . . . are
included in the language of ACA0. The language of ACA0 also includes a
binary relation ‘∈ ’ whose intended meaning when ‘x ∈ X’ is that the number
x is a member of the set X. The axioms of ACA0 are:
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1. The axioms of PA except the induction scheme.

2. (Induction) ∀X(0 ∈ X ∧ ∀x(x ∈ X → x+ 1 ∈ X)→ ∀x(x ∈ X),

3. (Arithmetical Comprehension Schema) Let φ(x) be any formula con-
taining no bound set variables where x is not free, and let X be a set
variable not occurring in φ. Then there is an axiom which asserts the
universal closure of: ∃X∀x(x ∈ X ↔ φ(x)).

In words, axiom (2) allows us to conclude the general statement ∀x(x ∈ X)
whose intended meaning is ‘all numbers are in the set X’ from the specified
induction clauses. Axiom (3) guarantees that for each formula satisfying the
specified conditions there is a set that contains exactly those elements for
which the formula holds. Note in axiom (3) there may be bound numerical
variables and free numerical or set variables.

Definition. Suppose that we have two LPA-structures M and N such that
M,N |= PA, N a substructure of M. Then N is an initial segment of M,
or M is an end-extension of N , iff

for all x ∈ N , for all y ∈M(M |= y < x =⇒ y ∈ N ) (2.12)

This situation will be denoted in symbols by N ⊆e M. N is a proper
initial segment if in addition M 6= N .

Theorem 10. Let Y ,Z be models of PA with Z an end-extension of Y. Then
for all Σ1 sentences A, Y |= A =⇒ Z |= A.

Theorem 11. Let M be a model of PA, and let f be an interpretation of
PA into the theory of M. This means that the interpreted structure Mf is
a model of PA. We claim that M can be embedded as an initial segment of
Mf (recall that we are considering interpretations which preserve equality).

Proof. Let G(x, y) be the formula of PA that formalizes the following: there
is a finite sequence u = 〈u0, u1, · · · , ux〉 such that (u0 = 0)f , ux = y, and
for all i ≤ x, (S(u1) = ui+1)f . By the induction axioms, it follows that
for every x ∈ M, there is a unique y ∈ Mf such that M |= G(x, y). Let
g(x) be the unique element y ∈ Mf such that M |= G(x, y). Then Mf |=
g(x + 1) = g(x) + 1, and g is an embedding of M as a submodel of Mf

(the verification is left to the reader that g preserves + and ×and so is
an embedding). The sentence ∀u, x(u < x + 1 → u < x ∨ u = x) is a
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theorem of PA, and hence holds in the models M and Mf . Specifically,
M |= (u < g(x + 1) → u < g(x) ∨ u = g(x))f , by substitution of g(x) for x
above. It follows then (by induction on x ∈ M) that, for every u ∈ M such
that M |= (u < g(x))f , there is a y < x ∈ M such that M |= (u = g(y))f .
This means g embeds M as an initial segment of Mf

Theorem 12. Let α and β be sentences of PA. Then PA + α interprets
PA + β iff every model of PA + α has an end-extension which is a model of
PA + β.

Proof. (⇒) This follows from the previous theorem. (⇐) Proof by contra-
positive. If PA + α does not interpret PA + β, then by Orey’s theorem,
there exits some k such that PA + α 0 Con(PAk + β). Consider a model of
PA+α in which ¬Con(PAk+β) holds. Being a Σ1-assertion, ¬Con(PAk+β)
then must hold in every end-extension N of M (by a fact of such asser-
tions in end-models). Then N can’t be a model of PA + β. If it were, we
would have that both N |= ¬Con(PAk + β), and by reflection that for all k,
N |= Con(PAk + β). This is absurd. So no end-extension N of the model
M of PA + α models PA + β.

IfM is a model of PA and ∀kM |= Con(PAk+φ), then Orey’s Theorem 9
guarantees that the theory ofM interprets the theory PA + φ. Furthermore
the interpreted structureMf is an end-extension ofM which models PA+φ.
This construction can be formalized in ACA0 (even if φ contains non-standard
elements as calculated by M) to give the following:

Theorem 13. ACA0 ` ‘ifM is a model of PA with m ∈M, φ(m) a formula,
and ∀k[M |= Con(PAk + φ(m))], then there is an end-extension N of M
such that N |= PA + φ(m)’.



Chapter 3

Semantics for ILM

Our goal in this chapter will be to formalize interpretability. This will be
done by providing a modal deductive system with a binary operator whose
intended interpretation is that one sentence interprets another over the base
theory PA. We will also prove in this chapter a model completeness theorem
for this system. This completeness theory will state that if the system dis-
proves a statement, then then there will be a structure of a particular kind
that satisfies the negation of the statement. Together with the fact that if the
system proves a statement, then all structures of this particular kind satisfy
the statement, we will have a complete semantics for the deductive system.

3.1 Axiomatization of ILM

The language L(�) of interpretability logic consists of a set of propositional
variables p1, p2, . . . , connectives ∨,∧,→,↔,¬,⊥, a unary operator 2, and a
binary operator �. Note we can consider some of the connectives as abbre-
viations of combinations of other connectives, e.g. A∧B as ¬(¬A∨¬B) and
⊥ as any contradiction. Let 3 be an abbreviation of ¬2¬.

Definition. The modal theory ILM in L(�) is axiomatized by all the tau-
tologies plus the following axiom schemes:

1. 2(A→ B)→ (2A→ 2B)

2. 2(2A→ A)→ 2A

3. 2A→ 22A

17
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4. 2(A→ B)→ A�B

5. (A�B ∧B � C)→ A� C

6. (A� C ∧B � C)→ (A ∨B) � C

7. A�B → (3A→ 3B)

8. 3A� A

9. A�B → (A ∧2D) � (B ∧2D)

The rules of inference are:

(i) if ` A and ` A→ B, then ` B (modus ponens), and

(ii) if ` A then ` 2A (necessitation).

Note that restricting this axiomatization to the first three axioms and
the two rules of inferences results in the well-known modal system GL, also
known as the logic of provability. In this system, the intended interpretation
of 2A is ‘PA proves A’.

It is also a well-known fact that axiom 3 is in fact derivable from ax-
ioms 1,2 along with the rules of inferences, though the derivation is non-
trivial. We will nontheless include it as an axiom for the sake of presentation.

For more information on GL, including the derivation of axiom 3, see [2].

3.2 Frames

Definition. A frame W is an ordered pair 〈W,R〉 consisting of a nonempty
set W and a binary relation R on W .

Definition. We call 〈W,R〉 finite if an only if the set W is finite.

Definition. A relation R on a set Y is called converse well-founded, or c.w.f.
for short, if for every nonempty set X ⊂ Y , there is an R-greatest element
of X, that is, an element m ∈ X such that xRm for no x ∈ X.

Proposition 14. If a relation R is converse well-founded, then it is irreflex-
ive.
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Proof. If Y is empty, then any relation R on Y will be vacuously irreflexive.
Without loss of generality, Y is non-empty. Assume for contradiction that
R on Y is converse well-founded and reflexive. Let x be an element of Y,
xRx, and let X = {x}. But then there is no R greatest element of X.
Contradiction. R is irreflexive.

Definition. We call a frame W = 〈W,R〉 transitive if and only if the relation
R is transitive, and call the frame converse well-founded if and only if the
relation R is converse well-founded.

Remark 15. Elements of W will occasionally be called ‘possible worlds,’
‘worlds,’ or ‘nodes’. The fact that a world w stands in the relation R to
a world x, so that wRx, will sometimes be denoted by saying that world w
‘sees’ world x. The terminology ‘words’ is due to the original development of
these semantics as a formalization of the notions of metaphysical necessity
and possibility.

Definition. A frame W will be called a GL-frame if and only if it is transitive
and converse well-founded.

3.3 ILM-Models

Definition. An ILM-frame is a GL-frame 〈W,R〉 with, for each w ∈ W , an
addition relation Sw, which has the following properties:

(i) Sw is a relation on w↑ = {w′ ∈ W |wRw′},

(ii) Sw is reflexive and transitive,

(iii) if w′, w′′ ∈ w↑ and w′Rw′′, then w′Sww
′′.

(iv) if there is a w such that xSwyRz, then xRz.

Notation. We will sometimes write S for {Sw|w ∈ W} when we are dealing
with ILM-models.

Definition. A forcing relation  is defined as a relation between worlds and
propositional variables. The relation for a particular model is sometimes
called a valuation map as it assigns a truth value to every propositional
variable at every world in the model. The relation is extended to one between
worlds and formulas by the following stipulations, so that for all worlds x, y, z
and formulas A,B:
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1. x  ¬A ⇐⇒ x 1 A,

2. x  A ∨B ⇐⇒ x  A or x  B,
and similarly for the other connectives,

3. x  2A ⇐⇒ ∀x(xRy ⇒ y  A),

4. x  A�B ⇐⇒ ∀y(xRy ∧ y |= A⇒ ∃z(ySxz ∧ z |= B)).

Definition. An ILM-model is given by an ILM-frame together with a forcing
relation .

Notation. If F is a frame, then we write F |= A iff F = 〈W,R, S〉 and w  A
for every w ∈ W and every  on F . If K is a class of frames, we write K |= A
iff F |= A for each F ∈ K. KFM will denote the class of finite ILM-frames.

3.4 Model Completeness

We now state and prove the main theorem of this chapter. The original result
was proved by Dick de Jongh and Frank Veltman in [3].

Finite Model Soundness and Completeness Theorem for ILM 16.
For each A, `ILM A if and only if KFM |= A.

Proof. The (⇒) direction is called the soundness of ILM with respect to
finite ILM-models, or finite model soundness of ILM for short. This direction
routine to verify, and amounts to showing that all the axioms of ILM are
valid at every node of every finite ILM-model, and that each rule of inference
preserves validity in every finite ILM-model (in fact these holds for all ILM-
frames, finite or not).

The (⇐) direction is called the completeness of ILM with respect to finite
ILM-models, or finite model completeness of ILM for short. In particular, we
will show that if `ILM ¬A, then there exists a (finite) ILM-model W, with
root b, such that b  ¬A.

To prove this direction, we will first develop the notions of adequate sets
of formulas and of critical successors of these sets.
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3.4.1 Adequate Sets

Definition. An adequate set of formulas in the language L(�) is a set Φ
which fulfills the following conditions:

1. Φ is closed under the taking of subformulas.

2. If B ∈ Φ and B is not a negated formula, then ¬B ∈ Φ.

3. ⊥ � ⊥∈ Φ

4. If B � C ∈ Φ, then also 3B,3C ∈ Φ.

5. If B as well as C in an antecedent or a consequent of some �-formula
is in Φ, then B � C ∈ Φ.

6. IfB�C,2D ∈ Φ, then there are formulasB′, C ′, which are L-equivalent
to B ∧2D, C ∧2D receptively, such that B′ � C ′ ∈ Φ.

We will show that every finite set of formulas is contained in some finite
adequate set.

Lemma 17. Let U be some finite set of formulas. Consider the operation
f(A,B) = A ∧ 2¬B. Let X be the smallest set of formulas containing
U and closed under f . Note X is infinite (consider g0 = f(A,A), gn+1 =
f(A, f(n))). Nonetheless X is included in only finitely many equivalence
classes with respect to L-provable equivalence.

Proof. The lemma follows from the special case in which ⊥∈ U and all other
elements of U are propositional variables. To prove this special case, proceed
by induction on the cardinality n of U . Note that a formula C belongs to X
iff C = A∧2¬D1 · · · ∧2¬Dn, for A ∈ U , and all Di’s ∈ X (possibly n = 0).
Therefore to prove the lemma, it is enough to show that up to L-equivalence,
there are only finitely many formulas of the form 2¬D ∈ X, say k many.
Once this is established, we will have a bound on n as well, and so a bound
on X up to L-provability (i.e. ≤ |U | · 2k).

Base case: If |U | = 1, then U = ⊥, and then every formula is L-equivalent
to ⊥, and we are done. Induction Case: So assume |U | > 1. We want to
show that if lemma holds for |U | = n, then the lemma holds for |U | =
n + 1. Consider D ∈ X. Then, for some n > 0, D has the form u ∧ E, or
u ∧ 2¬F1 ∧ · · · ∧ 2¬Fn, with u ∈ U , and all the F ’s in X. If u =⊥, then
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2¬D is L-equivalent to 2¬ ⊥, (because D =⊥ ∧E). If u 6=⊥, then let E ′

be obtained by replacing all occurrences of the sentence variable u in E with
⊥, so that E ′ = 2¬F ′1 ∧ · · · ∧ 2¬F ′n. By the induction hypothesis, there
are only finitely many choices for E ′ up to L-equivalence. (Warning: we
cannot assume that E ′ ∈ U . Instead, apply the induction hypothesis to the
subformulas F ′i .)

Therefore, to prove the lemma, it is enough to show that 2¬(u ∧ E) is
L-equivalent to 2¬(u ∧ E ′). To see this, we use the completeness theorem
of L with respect to finite Kripke models (i.e. that L 0 A =⇒ exists a
finite L model V with root b s.t. b valuates A as false). First note that E,
being a conjunction of 2-formulas, is preserved upwards in Kripke models;
that is, if x  E, and xRy, then y  E (as R is transitive in Kripke models
appropriate to L).

Now suppose that L 0 2¬(u ∧ E), so that exists a (finite) Kripke model
with root b where 2¬(u ∧ E) fails . This means that there is a node x 6= b
such that x  u ∧ E. We can assume that x is an R-maximal node (by the
c.w.f. principle). So we must have that x  u∧ (2¬u∧E). But this implies
that x  u ∧ E ′ (since every occurrence of u in E lies within the scope of
a 2-operator). Hence, 2¬(u ∧ E ′) fails in this same Kripke model. The
converse in completely similar. So 2¬(u ∧ E) and 2¬(u ∧ E ′) fail together
in all (finite) Kripke models.

Lemma 18. Every finite set of formulas is contained in a finite adequate
set.

Proof. Let Φ1 be a finite set of formulas. We can assume that ⊥ � ⊥∈ Φ1.
Define n(A), the pseudo-negation of A, as: n(A) = B if A = ¬B and n(A) =
A otherwise. Let U0 be the closure of Φ1 under subformulas, and U the closure
of U0 under pseudo-negation. Then U is closed under both subformulas and
pseudo-negations (i.e. we will not have a subformula appear in U that was
not already in U0). Let X be the union of an infinite sequence of sets of
formulas X0, X1, . . . , where X0 = U . Let Xn+1 be the union of Xn and the
set of all formulas F ∧ 2¬G, F,G ∈ Xn, which are not L-equivalent to any
formula in Xn. Clearly then X is closed (up to provable L-equivalence) under
the operation f(F,G) = F ∧ 2¬G. By the previous lemma, X is still finite
(i.e. f starts repeating itself). Now let:

Φ2 = U ∪ {B � C|B,C ∈ X} ∪ {2¬A|A ∈ X}. (3.1)
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Finally, let Φ3 be the closure of Φ2 under subformulas and pseudo-negations.
The claim now is: Φ3 is a finite adequate set of formulas containing Φ1.

To prove this, we use the following facts which can be easily proved using
induction on n (the indices of X):

1. If a formula B�C is a subformula of a formula in Xn, then B�C ∈ U ,

2. If a formula of the form 2D is a subformula of a formula in Xn+1, then
either D = ¬A for some A ∈ Xn, or 2D ∈ U .

Now, to prove clause 6 of the definition of adequate set, suppose that B�C,
2D are in Φ3. Then B � C is a subformula of a formula in Φ2. So, by the
definition of Φ2, one of the following holds:

1. B � C is a subformula of a formula of U ,

2. B,C ∈ X, or

3. B � C is a subformula of X, and therefore belongs to U , by the fact
above.

Since U ⊆ X, and U is closed under subformulas, in all cases, B,C ∈ X.
Similarly, from 2D ∈ Φ3, it follows that 2D is a subformula of a formula
in Φ2. By similar reasoning as above, we have the either D = ¬A, for some
A ∈ X, or 2D ∈ U . Since U is closed under both subformulas and pseudo-
negation, then in the second case, ¬D ∈ U , and so ¬D ∈ X. In either
case, we have that ¬D is L-equivalent to some formula in X. Since X is
closed under f up to L-equivalence, the formulas B ∧ 2D and C ∧ 2D are
L-equivalent to some formulas B′, C ′ in X. To get this, take B′ = f(B, x),
where x is the formula in X that ¬D is equivalent to (note that in the first
case where D = ¬A, for some A ∈ X, both B ∧ 2D and C ∧ 2D need not
be in X). This proves clause 6.

To prove clause 5, observe that if B,C is the antecedent or consequent
of some �-formula in Φ3, then, reasoning as above, B,C ∈ X, and therefore
B � C ∈ Φ2, hence B � C ∈ Φ3.

To prove clause 4, recall that 3 = ¬2¬. Again, if B � C ∈ Φ3, then
B,C ∈ X, and hence 2¬B,2¬C ∈ Φ2. But then ¬2¬B,¬2¬C ∈ Φ3. As
Φ3 is closed under pseudo-negations, 3B,3C ∈ Φ3.

The other clauses are easy to check. For instance, for clause 3, we have
⊥ � ⊥∈ U by assumption, so ⊥ � ⊥∈ Φ3, as U ⊆ Φ3. Clauses 1 and 2 are
built into Φ3 by definition.
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3.4.2 Critical Successors

We now prove some further results towards the proof of The Finite Model
Completeness Theorem for ILM 16.

Notation. Given a set of modal formulas Γ, we write Γ ` A when there is a
finite conjunction C of modal formulas in Γ such that ILM ` C → A.

Definition. We say that Γ is ILM-consistent when Γ 0⊥. Relative to a
modal formula A, we say Γ is maximal ILM-consistent or just maximal con-
sistent whenever Γ is ILM-consistent and for every subsentence S of A, either
S ∈ Γ or ¬S ∈ Γ.

Notation. In the following, we consider a fixed finite adequate set Φ, while
Γ,∆ will denote maximal ILM-consistent subsets of Φ.

Definition. ∆ is a successor of Γ, in symbols Γ ≺ ∆ iff:

1. Both 2A,A ∈ ∆ for every 2A ∈ Γ, and

2. There exists a sentence 2E such that 2E ∈ ∆, but 2E /∈ Γ.

Definition. For a modal formula C, we say that ∆ is a C-critical successor
of Γ iff:

1. Γ ≺ ∆, and

2. 2¬A,¬A ∈ ∆ for every A � C ∈ Γ, i.e. ∆ contains no formulas that
“asks for” C.

Note that a successor of a C−critical successor is also C−critical successor
of the original set.

Lemma 19. The following are theorems of ILM:

1. (2¬B)→ (B � C), and

2. A� (A ∧2¬A).
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Proof. First we prove 2:

2(3A→ 3(A ∧2¬A) (3.2)

(3A) �3(A ∧2¬A) (3.3)

(3A) � (A ∧2¬A) (3.4)

(¬2¬A) � (A ∧2¬A) (3.5)

(A ∧2¬A) � (A ∧2¬A) (3.6)

A� (A ∧2¬A) (3.7)

The first equation (3.2) is a theorem of GL, and we have that GL ⊂ ILM.
The second equation follows from the first by applying 2(A→ B)→ A�B
(axiom 4 of ILM). The third equation follows from the transitivity of � and
the axiom 8. Rewrite 3 from above, and use reflexivity of � to get the fourth
and fifth equations. Finally, apply axiom 6 on the fourth and fifth equations
to get equation 6.

For 1, notice that GL ` 2¬B → 2(B → C) (apply distribution of 2

over the propositional calculus tautology ¬B → (B → C)). Use axiom 4 and
tautological reasoning to get ILM ` 2¬B → (B � C).

Lemma 20. If ¬(B � C) ∈ Γ, then there exists a C-critical successor ∆ of
Γ such that B ∈ ∆.

Proof. By the second part of the above lemma, ¬2¬B ∈ Γ, so since Γ is
ILM-consistent (by assumption), then 2¬B /∈ Γ. Consider:

Ψ = {D,2D|2D ∈ Γ} ∪ {¬A,2¬A|A� C ∈ Γ} ∪ {B,2¬B} (3.8)

By the adequacy conditions of Φ, Ψ ⊆ Φ. If we have that Ψ is ILM-
consistent, we can take ∆ to be the competition of Ψ, that is, a maximal
consistent subset of Φ containing Ψ, and we are done. So, assume for con-
tradiction that Ψ is not ILM-consistent. Then Γ `⊥. We can write this as
D1, . . . Dk,2D1, . . .2Dk ` B ∧ 2¬B → A1 ∨ · · · ∨ Am ∨ 3(A1 ∨ · · · ∨ Am),
where Di ∈ Γ and Ai � C ∈ Γ. (we agree here that the empty disjunction
is ⊥ and the empty conjunction is >) So, 2D1, . . .2Dk ` 2(B ∧ 2¬B →
A1∨· · ·∨Am∨3(A1∨· · ·∨Am)), as ILM contains GL, and we can apply neces-
sitation. Then, 2D1, . . .2Dk ` (B∧2¬B)�(A1∨· · ·∨Am∨3(A1∨· · ·∨Am)),
by application of axiom 4, 2(A→ B)→ (A�B).
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Now, 2D1, . . .2Dk ` (B ∧2¬B) � (A1 ∨ · · · ∨Am), as A ∨3A�A is a
theorem of ILM, and � is transitive. Then, as the Di’s ∈ Γ, and, by the first
part of the last lemma, B �B ∨2¬B. we have:

Γ ` B � A1 ∨ · · · ∨ Am. (3.9)

Finally, Γ ` B � C, as, for each i, Ai � C ∈ Γ. But this contradicts that
¬(B � C) ∈ Γ and the assumed consistency of Γ. So, Ψ is consistent, as
desired, and the Lemma holds.

Lemma 21. Let B �C ∈ Γ. Then, if there exists an E-critical successor ∆
of Γ with B ∈ ∆, then there also exists an E-critical successor ∆′ of Γ with
C ∈ ∆′.

Proof. As above, let:

Ψ = {D,2D|2D ∈ Γ} ∪ {¬F,2¬F |F � E ∈ Γ} ∪ {C,2¬C}. (3.10)

Then, by adequacy of Φ,Ψ ⊆ Φ. 2¬C /∈ Γ. If it were, applying axiom
7 to the assumption that B � C ∈ Γ, we get that 3B → 3C ∈ Γ. Then,
2¬B ∈ Γ, and so ¬B ∈ ∆, contradicting our assumption that B ∈ ∆ and
the ILM-consistency of ∆.

Now suppose for contradiction that Ψ is ILM-inconsistent. Similar to
(3.9) above, we have Γ ` C�F1∨ · · ·∨Fm, then Γ ` B�F1∨ · · ·∨Fm (since
B�C) hence Γ ` B�E. If m = 0, then by the second equation Γ ` B� ⊥.
Then, Γ ` 2¬B, and so 2¬B ∈ Γ. But this contradicts the fact that B ∈ ∆
and ∆ is a consistent successor of Γ. So m > 0. As Ψ ⊆ Φ, then E is the
consequent of some � formula in Φ. Since B � C ∈ Γ, and by assumption
Γ ⊆ Φ, B is the antecedent of some � formula in Φ. By the adequacy
condition, B � E ∈ Φ. Then, as Γ ` B � E and Γ is a maximal consistent
subset of Φ, we have that B � E ∈ Γ. As ∆ is assumed to be an E-critical
successor of Γ, then ¬B ∈ ∆. But this contradicts our assumption that ∆
is consistent and that B ∈ ∆. So, Ψ is ILM-consistent. Finally, take ∆′ as
a maximal consistent subset of Φ that includes Ψ. Then ∆′ is an E-critical
successor of Γ with C ∈ ∆, as desired, and the Lemma is proved.

3.4.3 Proof

We proceed with the proof of the Finite Model Completeness of ILM now that
we have the preceding results about adequate sets and critical successors. So
assume 0ILM A.
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By Lemma 18, we are guaranteed a finite adequate set Φ such that ¬A ∈
Φ. Furthermore let Γ be a maximal-consistent subset of Φ containing ¬A.
We will now construct the model W with root b so that b  ¬A.

Definition. Define the depth of a maximally consistent subset ∆ of a set Φ
as the length of the longest chain of critical successors in Φ that all contain
∆. So if is the longest such chain is ∆ = ∆1 ≺ ∆2 ≺ · · · ≺ ∆n, then the
depth of ∆ is n

Remember that we have no restrictions whatsoever on the set of an ILM-
model. The underlying set WΓ of W will be built relative to Γ. Define WΓ

as the set of all pairs 〈∆, τ〉 such that:

1. The first coordinate ∆ is a maximal ILM-consistent subset of Φ that
contains Γ in the sense that either Γ ≺ ∆ or Γ = ∆, and

2. The second coordinate τ is a finite sequence of formulas from Φ, such
that its length does not exceed the depth of Γ minus the depth of ∆.

Note then that 2. above implies that 〈Γ, τ〉 ∈ WΓ iff τ is a sequence of length
zero i.e. the empty sequence.

Notation. Given a pair 〈∆, τ〉 = w, denote by (w)0 the first coordinate ∆
and by (w)1 the second coordinate τ .

Let the relation R of W be defined as follows:

wRw′ ⇐⇒ (w)0 ≺ (w′)0 ∧ (w)1 ⊆ (w′)1. (3.11)

Definition. We say that w′ is a C-critical R-successor of w if the set (w′)0

is a C-critical successor of (w)0 and (w′)1 is of the form (w)1 ∗ 〈C〉 ∗ τ (where
∗ is the concatenation operator and τ is arbitrary).

Then the relation Sw of W holds between w′ and w′′ (write w′Sww
′)

exactly when:

1. wRw′ and wRw′′,

2. (w′)1 ⊆ (w′′)1,

3. For each A such that 2A ∈ (w′)0, also 2A ∈ (w′′)0, and

4. If w’ is a C-critical R-successor of w, then so is w”.
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For the relation  of W, for p atomic and w ∈ WΓ, define:

w  p iff p ∈ (w)0. (3.12)

Finally, let 〈Γ,∅〉 = b be the root of W.
It is routine to verify that W = 〈WΓ, R, S, b〉, with S = {Sw | w ∈ WΓ },

as defined above, is a finite ILM-model. To show that W is our desired
counter-model to A (and hence that the Theorem holds), it will be enough
to prove the following:

Lemma 22. For each A ∈ Φ and w ∈ WΓ, w  A ⇐⇒ A ∈ (w)0

This proof is by induction on the complexity of formulas. The cases for
the logical connectives ⊥,→,¬, and ∨ are straightforward. For instance for
⊥, w 1⊥ (always), so by equation (3.12) ⊥/∈ (w)0. The reverse direction
is entirely similarly, and so we get the lemma for ⊥. We can restrict our
attention to proving the lemma for B�C granted the lemma holds for both
B and C. The reason for this is that ILM ` 2B ↔ ¬B� ⊥. So we can
transform any 2 formula to one with only �’s appearing. Hence if we prove
the lemma for B � C then the lemma holds for 2-formulas as well. So to
prove the Lemma have to show that:

B � C ∈ (w)0 ⇐⇒ w  B � C, i.e. (3.13)

B � C ∈ (w)0 ⇐⇒ [∀w′(wRw′ ∧ C ∈ (w′)0 ⇒ ∃w′′(w′Sww′′ ∧ C ∈ (w′′)0))]
(3.14)

(⇐) Suppose B � C /∈ (w)0. Then ¬(B � C) ∈ (w)0 by assumption that
the the first coordinates of all elements of WΓ are maximal consistent sets,
in particular (w)0. To show that w  ¬(B � C), we need to show that:

∃w′(wRw′ ∧B ∈ (w′)0 ∧ ∀w′′(w′Sww′′ ⇒ ¬C ∈ (w′′)0)). (3.15)

By Lemma (20), (w)0 has C-critical successor (w′)0 with B ∈ (w′)0. Let
w′ = 〈w′0, w′1〉, where w′1 = (w)1 ∗ 〈C〉. Then w′ ∈ WΓ and moreover w′ is a
C-critical R-successor of w. Now consider any w′′ such that w′Sww

′′. By (4)
of the definition for the relation Sw and the fact that w′ is a C-critical R-
successor of w, w′′ is also C-critical R-successor of w. Then as C�C ∈ (w)0,
we have that ¬C ∈ (w′′)0 by the definition of C-critical successors. This
shows equation (3.15), and hence (⇐), as desired.

(⇒) Suppose B�C ∈ (w)0 and that both wRw′ and B ∈ (w′)0. Consider
the set {2D | 2D ∈ (w′)0 }. Because this is a subset of Φ and we have
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assumed that B � C ∈ Φ, the last condition of the adequacy of Φ insures
that there are sentences B′, C ′ ∈ Φ which are ILM-equivalent to B ∧2D1 ∧
· · ·∧2Dn, C∧2D1∧· · ·∧2Dn respectively. By adequacy again, B′�C ′ ∈ Φ.
Then since ILM ` B�C → B′�C ′ (axiom 9 of ILM) and (w)0 is a maximal
consistent subset of Φ (by assumption), we have that ¬(B′�C ′) /∈ (w)0, and
hence B′ � C ′ ∈ (w)0.

Now as (w)0 ⊆ (w′)0 (by assumption), we have that 2D1, . . . ,2Dn ∈
(w′)0. Also B ∈ (w′)0 (by assumption). Hence B,2D1, . . . ,2Dn ∈ (w′)0.
Since (w′)0 is also a maximal consistent set and B′ ∈ Φ is ILM-equivalent to
B ∧2D1 ∧ · · · ∧2Dn, reasoning as above we get that B′ ∈ (w′)0.

First, assume that w′ is an E-critical R-successor of w for some modal
formula E. Then (w′)1 = (w)1 ∗ 〈E〉 ∗ τ for some τ by definition 3.4.3. Then
by Lemma 21, there is an E-critical w′′0 of (w)0 such that C ∈ w′′0 . As w′′

is a maximal consistent, C,2D0, . . . ,2Dn ∈ (w′′)0 by similar reasoning as
above. Now let w′′ = 〈w′′0 , w′′1〉, where w′′1 = w′1. By Definition (3.4.2), as all
modal formulas 2D of (w′)0 belong to (w′′)0, (w′)0 cannot be a successor of
(w′′)0. Then as ≺ is a linear ordering among maximal consistent subsets of
Φ (modulo non-boxed formulas), the depth of (w′′)0 is no greater than the
depth of (w′)0. Because w′ ∈ WΓ the length of (w′)1 does not exceed the
depth of Γ minus the depth of (w′)0. Combining these facts, we get that the
length of (w′′)1 does not exceed the depth of Γ minus the depth of (w′′)0.
Together with the fact (by construction) that (w′′)0 is a maximal consistent
subset of Φ, we have from the definition of WΓ that (w′′) ∈ WΓ. It is easy to
verify then that w′Sww

′′ and hence equation (3.14) holds.

Assume on the other hand that w′ was not an E-critical R-successor.
Then all we know from the assumptions is that (w)0 ≺ (w′)0. But every
successor is also a ⊥-critical successor. So we can still apply Lemma 21
and proceed just as above to verify equation (3.14) to conclude the proof of
Lemma 22. This finishes the proof of Lemma 22.

To finish the proof of the Finite Model Completeness Theorem, and hence
the Main Theorem 16 of this chapter, recall that we defined the root of W as
b = 〈Γ,∅〉. By the stipulation of Γ at the beginning of the Theorem, ¬A ∈ Γ.
So by Lemma 22, b  ¬A. We have from above that W is a finite ILM-model.
So under the assumption that ILM 0 A, we have a finite ILM-model with
root b such that b |= ¬A. Note that as ILM is both sound and complete with
respect to a finite class of models, we also have the decidability of theory
ILM with this result.
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3.5 Simplified Model Completeness

ILM-models are defined in Section 3.3, while simplified ILM-models will be
defined below. Simplified models are simplified in the sense that they have
a single S relation instead of the set {Sw | w ∈ W } in ILM-models.

In this section, we prove that for every finite ILM-model, there is a sim-
plified ILM-model such that the two satisfy exactly the same modal formulas
at their respective roots. Applying the Model Soundness and Completeness
Theorem for ILM 16 will then give the Simplified Model Soundness and Com-
pleteness Theorem for ILM 23 with respect to simplified ILM-models. This
will be used extensively in the proof of the Main Result of this paper, pre-
sented in Chapter 4. The original result is proved by Albert Visser in [12],
while the presentation below follows [1].

3.5.1 Simplified ILM-Models

Definition. A simplified ILM-frame 〈W,R, S〉 is a GL-frame 〈W,R〉 together
with just one additional relation S between nodes that satisfies:

1. S is a transitive, reflexive, binary relation on W such that R ⊆ S, and

2. ∀x, y, z ∈ W (xSyRz =⇒ xRz).

Definition. A simplified ILM-model is given by a simplified ILM-frame to-
gether with (as in Definition (3.3)) a forcing relation  which commutes with
the boolean connectives and obeys:

x  2A ⇐⇒ ∀x(xRy ⇒ y  A),

x  A�B ⇐⇒ ∀y(xRy ∧ y |= A⇒ ∃z(xRz ∧ ySz ∧ z  B)).

Notation. KSM will denote the class of simplified ILM-frames.

Simplified Model Soundness and Completeness Theorems for ILM
23. For each A, `ILM A if and only if KSM |= A.

The (⇐) direction is routine to verify and amounts to showing that all
the axioms of ILM are valid at every node of every simplified ILM-model and
that each rule of inference preserves validity in every simplified ILM-model.

The (⇒) is shown by applying the Bisimulation Theorem 24 (below) to
the model W provided by the Model Completeness Theorem for ILM 16 to
obtain the desired simplified ILM-model W′.
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3.5.2 Bisimulation

Bisimulation Theorem 24. For every ILM-model W with root b there is
a simplified ILM-model W′ with root b′ such that for all modal formulas A,
b  A ⇐⇒ b′  A.

We will explicitly build the models W,W′ given models W′,W respec-
tively.

Building an ILM-model W′ from a simplified ILM-model W = 〈W,R, S, b, 〉
is easy: We take the same underlying set W and relation R as W. Build the
relation Sw for each w ∈ W by setting:

wRw′ ∧ wRw′′ ∧ w′Sw′′ ⇒ w′Sww
′′ (3.16)

The forcing relation ′ for W is set to agree on all nodes with the old forcing
relation  for all atomic modal formulas. It is easy to check then that the
two relations will agree on all modal formulas.

We can see the new ILM-model W = 〈W,R, {Sw},〉 as just the old
model W′ with the addition of the relations {Sw} built according to equa-
tion (3.16). This construction of W from W′ will be called the induced
ILM-model. As mentioned above a simplified ILM-model and its induced
ILM-model will agree on all modal formulas on all nodes, in particular their
roots. We can then think of the class of simplified ILM-models as a subset of
the class of ILM-models in that each simplified ILM-models has a naturally
induced ILM-model.

Building a simplified ILM-model from an ILM-model on the other hand is
a more involved matter. We must “collapse” the set of relations {Sw} in W′

into a single relation S in W. Although the two will agree on all formulas
on their roots, the two will in general not share the same underlying set.
The relationship between W and the induced model of W′ will be called
‘bisimulation’.

Definition. Let W and W′′ be two ILM-models. Let wβw′′ be a relation
between elements of W and W ′′. Then W and W′′ bisimulate each other (or
β is a bisimulation between the two) if and only if the following hold:

1. bβb′′, where b and b′′ are the respective roots of W and W ′′,

2. xβx′′ → (x  A↔ x′′ ′′ A), for A atomic,
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3. For all x, y, z ∈ W , x′′, y′′, z′′ ∈ W ′′ with xβx′′, the following holds:

∀y[xRy → ∃y′′(yβy′′ ∧ x′′R′′y′′ ∧ ∀z′′(y′′Rx′′z
′′ → ∃z(zβz′′ ∧ ySxz)))],

4. Conversely for all x, y, z ∈ W , x′′, y′′, z′′ ∈ W ′′ with x′′βx:

∀y′′[x′′Ry′′ → ∃y(y′′βy ∧ xR′′y ∧ ∀z(yRxz → ∃z′′(z′′βz ∧ y′′S ′′x′′z′′)))],

We can check that β is reflexive, symmetric, and transitive, and hence is
an equivalence relation on the class of ILM-models. Furthermore:

Lemma 25. If β is a bisimulation between W and W′′ and xβx′′, then for
all modal formulas, x  A↔ x′′  A′′.

Proof. Proceed by induction on complexity of formulas. The cases for ⊥ and
the logical connectives are routine and left for the reader. As before, we will
use that ILM ` 2A ↔ ¬3¬A and ILM ` 2A ↔ ¬A� ⊥ to proceed to the
case where A = B � C and the Lemma holds for B and C. By symmetry
of the definition of β, we just need to show one direction of the Lemma. So
assume x 6 A. By Definition 3.3, there is a y with xRy, y  B, and for all
z such that ySxz, we have z 6 C. As xβx′′ by assumption of the Lemma,
there is a y′′ guaranteed by part 4 of the definition of β such that:

y′′βy ∧ xR′′y ∧ ∀z(yRxz → ∃z′′(z′′βz ∧ y′′Sx′′z′′)) (3.17)

From the induction hypothesis as we have yβy′′, then also y′′ ′′ B. The
claim now will be that y′′ witnesses that x′′ 6 C. For a contradiction assume
not, so that there is a z′′ such that both y′′S ′′x′′z

′′ and z′′  C. Then by
equation (3.17) we would have a z such that both zβz′′ and ySxz. But
then by the induction hypothesis, we would have that z  ¬C, contrary to
above that z  C. So z′′ does not exist, and y′′ witnesses that x′′ 6 A, as
desired.

We return to the proof of the Bisimulation Theorem 24 and show that W
and W′ (defined below) will bisimulate each other. Define W′ = 〈W ′, R′, {S ′w′},′
〉 relative to W as follows:

1. W ′ is the set of all finite sequences 〈w1, . . . , wn〉 with elements wi from
W such that both x1 = b and for every 0 < i < n, either xiRxi+1 or
xiSjxi+1 with j < i.

2. b′ = 〈b〉
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3. For for all atomic p, 〈x1, . . . xn〉 ′ p iff xn  p.

4. 〈x1, . . . , xm〉S ′〈y1, . . . , xn〉 iff ∀i ≤ m(xi = yi) and m ≤ n. That is,
S ′ is the relation of (not necessarily proper) end-extensions among se-
quences.

5. 〈x1, . . . , xm〉R′〈y1, . . . , xn〉 iff 〈x1, . . . , xm〉S ′〈y1, . . . , xn〉 with m < n,
∃k : m ≤ k < n so that xkRxk+1, and ∀j∃s : m ≤ s < j < n so that
yjSysyj+1.

Note in 5. above there will be a maximum k : m ≤ k < n. Without loss of
generality we can consider this k and assume without loss of generality that
∀j > k¬(xjRxj+1).

Lemma 26. If 〈x1, . . . , xm〉R′〈y1, . . . , yn〉, then xmRyn.

Proof. By 5. above we have that n > m. Also either yn−1Ryn or ∃s : m ≤
s < n so that yn−1Sysyn and hence by the definition of Sw that ysRyn. So in
either case ∃j : m ≤ j < n so that yjRyn. By 1. above, we have for ~y that or
every i < n, either xiRxi+1 or xiSjxi+1 with j < i Then iteratively apply the
property that ∀z : wSzw

′Rw′′ → wRw′′ to lower j to m to get xmRyn.

Now it is routine to verify that W′ is a simplified ILM-model as defined
in Definition 3.5.1. In particular we use Lemma 5 to conclude that R′ is also
converse well-founded from the fact that R is converse well-founded.

Lemma 27. If 〈. . . x〉R′〈. . . x, y〉S ′〈. . . , x, y, . . . , z〉 and 〈. . . x〉R′〈. . . x, y, . . . , z〉,
then ySxz (possibly y = z).

Proof. As 〈. . . x〉R′〈. . . x, y〉, from 5. above, we have that k = x and hence
xRy. Since 〈. . . x〉R′〈. . . x, y, . . . , z〉 by the same definition there is an R-step
between adjacent elements somewhere between x and z. There are two cases
to consider:

1. The R-step happens between x and y. If Sx steps are taken between
every node and its immediate successor, then because Sx is defined to
be transitive, we have ySxz as desired. If not, then there are u, v, w,
u 6= x such that vSuw. Then from this we have uRw. Without loss of
generality we can assume that the last non-Sx step is taken between v
and w and rewrite ~z as:

〈. . . , z〉 = 〈. . . , x, y, . . . , u, . . . , v, w, . . . , z〉 (3.18)
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with possibly y = u and w = z. From the definition of elements of
W ′ we can conclude that we can go between any two elements in ~z (in
particular y and u) with Si moves of (not necessarily identical) indices.
(Note this point is not immediate as this definition allows for an R
move between adjacent elements of the sequence ~z. But if xkRxk+1, we
can examine cases and conclude that also xkSixk+1 for some i < k.)
Using uRw and ∀z : wSzw

′Rw′′ → wRw′′ again we conclude that yRw.
Then from this and the assumption xRy we get that xRy, xRw, and
yRw, i.e. that ySxw. But we assumed that only Sx steps were taken
after w. So by the transitivity of any Si we get that ySxz, as desired.

2. The R-step happens somewhere between y and z. In this case cRd for
some c, d such that:

〈. . . , z〉 = 〈. . . , x, y, . . . , c, d, . . . , z〉 (3.19)

with possibly y = c and d = z. We know that between d and y Si steps
occur with x ≤ i ≤ y. As above, using cRd and ∀z : wSzw

′Rw′′ →
wRw′′ we conclude that xRd, yRd. We already have that xRy. There-
fore ySxd. Now reason with d as we did with y in the proof above to
get dSxz. Combine this with ySxd and that every Si is transitive to
get ySxz, as desired. This completes the proof of the Lemma.

Now let W′′ be the ILM-model induced by the simplified ILM-model W′

through wRw′∧wRw′′∧w′Sw′′ ⇒ w′Sww
′′ (equation (3.16)). Remember W′

and W′′ share the same underlying set W , relation R, and forcing relation
.

Lemma 28. Define wβw′′ iff xnβ〈x1, . . . , xn〉. Then W and W′′ bisimulate
each other through β.

Proof. Clauses 1 and 2 of Definition 3.5.2 saying that the two models share
the same root and that their forcing relations agree on atomic p are true by
construction of W′′ relative to W.

For clause 3, suppose xβx′′ and xRy, i.e. xβ〈. . . , x〉 and xRy. Then to
find a y′′ such that yβy′′ and x′′R′′y′′ take y′′ = 〈. . . , x, y〉, which satisfies
yβ〈. . . , y〉 and 〈. . . , x〉R′′〈. . . , x, y〉. Now consider any z′′ such that y′′Rx′′z

′′.
Rewriting this for the model W′′, consider any 〈. . . , x, y, . . . , z〉 such that
〈. . . , x〉R′′〈. . . , x, y〉, 〈. . . , x〉R′′〈. . . , x, y, . . . , z〉, and 〈. . . , x, y〉S ′′〈. . . , x, y, . . . , z〉
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all hold. Then 〈. . . x〉R′′〈. . . x, y〉S ′′〈. . . , x, y, . . . , z〉 and 〈. . . x〉R′′〈. . . x, y, . . . , z〉
both hold. By Lemma 27, ySxz, as desired.

For clause 4, suppose xβ〈. . . , x〉 and 〈. . . , x〉R′′〈. . . , x, . . . y〉. By Lemma 26,
xRy. Suppose ySxz. We want to have a z′′ such that zβz′′ and y′′S ′′x′′z

′′. I
claim z = 〈. . . , x, . . . , y, z〉 will work. That zβz′′ holds is clear. Rewriting
y′′S ′′x′′z

′′ we need to show that 〈. . . , x〉R′′〈. . . , x, . . . y〉, 〈. . . , x〉R′′〈. . . , x, . . . y, z〉,
and 〈. . . , x, y〉S ′′〈. . . , x, y, . . . , z〉 all hold. The last is clear from the defini-
tion of S ′′ as the relation of end-extensions. We have the first by assumption,
which together with the assumption that ySxz (and hence yRz) implies the
second. This proves the Lemma.

To finish the proof of the Bisimulation Theorem 24, take W′′ as define
above. As both the bisimulation and the the inducement maps preserve
which formulas are satisfied at the roots of the models they act on, we have
what we desire.



Chapter 4

Main Result

In this section, we will show that the theorems of ILM exactly characterize
the universally valid inferences one can make concerning interpretability over
the base theory PA. Taking PA as a base theory means that the relation we
will be analyzing will be between two formulas written in the language of
PA. The relation will hold if and only if the finite extension of PA through
addition of A interprets the finite extension of PA through addition of B. So
what we want is that the modal formula A�B represents the statement: PA
proves that ‘PA+A interprets PA+B’. To make this idea explicit and prove
it, we will introduce the notion of an arithmetical realization. This will be a
map that ‘realizes’ modal formulas as PA formulas. Importantly, realizations
will respect connectives, map propositional variables to PA sentences, and
map the symbol � to a formalization (in PA) of the interpretability relation
over PA. Then to rephrase the purpose of this section, we will show that
ILM proves a statement if and only if PA proves all arithmetical realizations
of the statement.

As a simple motivating example, `ILM A � B ∧ B � C → A � C. Then
with the Main Result we can easily conclude that the interpretability relation
of single-sentences extensions of PA is transitive. The advantage of such a
general approach is that there is no need to consider any specific details of
the sentences or the interpretations that witness the assumptions.

36
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4.1 Arithmetical Realizations

Definition. By an arithmetical interpretation, we mean a mapping ? from
the modal language of ILM to the language of PA which commutes with
the propositional connectives and such that (A�B)? = InterpPA(pAq, pBq),
where InterpPA(pAq, pBq) is a formalization (in PA) of ‘PA + A? interprets
PA +B?’.

We are now in a position to state the Main Result of this paper. Alessan-
dro Berarducci in [1] and Volodya Shavrukov in [11] independently obtained
the original proofs of this result. This presentation follows the former paper.

Main Result. (Outside PA) For all arithmetical realizations ?,

ILM ` A if and only if PA ` A? (4.1)

The (⇒) direction is called the Arithmetical Soundness of ILM. This
direction is much simpler than the reverse. As with other soundness proofs,
it is enough to show that all realizations of the axioms of ILM are provable
in PA, and that the rules of inference preserve provability. For instance, any
realization of Axiom 8 is the statement that PA + Con(PA + A) interprets
PA +A. This all these realizations are provable follows from the Formalized
Gödel’s Completeness Theorem.

The (⇐) direction is called the Arithmetical Completeness of ILM. It
involves more complicated reasoning. The key element will be a systematic
procedure that takes an arbitrary unprovable formula of ILM, acts on its
counter-model guaranteed by the Simplified Model Completeness Theorem
in the previous chapter, and constructs an induced arithmetical realization.
Moreover the induced realization of the original ILM-unprovable formula will
be unprovable in PA. For example, if the ILM-unprovable formula is of the
form A�B, then the procedure will generate a PA-unprovable statement that
is the formalization of the statement: ‘PA + A does not interpret PA + B’.
Of course, the constructed statement will be in the language of PA, so it will
ostensibly be a statement about the natural numbers. But by a numbering
of the vocabulary of PA, the number-theoretic statement will mirror the
syntactical relation that holds only between extensions of PA that do not
interpret one another. The part below will follow [1].
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4.2 Arithmetical Completeness

Proof. Assume 0ILM A. By the Simplified Model Completeness Theorem,
there is a simplified ILM-model, call it W = 〈W,R, S, b,〉, such that b 
¬A.

Without loss of generality assume that in the model b = 1 and 0 /∈ W . We
will now slightly modify our model for purposes of the proof. We will adjoin
a new 0 root to the model W. The motivation for this is that we are going
to define a function F that defines a process that moves along the model
with the new 0 root. We will eventually want to show that in the standard
model that the process never leaves the 0 root. But we will also show that if
a node is R-connected to the 0 root, that the following statement will hold
in PA: ‘PA plus ‘the limit is 1’ is consistent’. But if this is consistent, then
PA 0 ‘the limit is not 1’. We will build the induced interpretation ∗ to use
this fact together with the assumption that 1  ¬A to obtain PA 0 A∗, as
detailed below.

With this in mind, extend R and S by setting 0Rx for all x in W , and 0Sx
for all x in W ∪ {0}. Also extend the forcing relation so that 0  A ⇐⇒
1  A, for all A atomic. This gives a new simplified ILM-model with
underlying set W ∪ {0} and root 0. The two models agree on their common
domain in the sense that for all formulas A, if x  A in one model, then
x  A in the other. From this point on, we will denote by W the model with
the new 0 root.

4.2.1 Definition of F

We will think of F as a process that starts at the 0 root and moves along the
model’s frame in discrete, numbered steps. To define F , we will first need to
introduce the concept of the rank of a node at a stage:

Definition. Let x ∈ W . We define rank(x,n), the rank of x at stage n, as
the smallest number i ≤ n such that PAi proves that L 6= x with a proof of
Gödel number ≤ n. If i does not exists, then we define rank(x, n) to be the
ordinal ω. Note that if the rank of an element y at stage n is less than ω, then
the rank of y will be ≤ n. This holds as n bounds the size of proofs of L = y,
exactly what we defined rank to be. Intuitively, the smaller rank(y, n) is,
the more inconsistent is the fact that L = y.

We will also need a (provably) infinitely repeating primitive recursive
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coding of the nodes of W ∪{0}. This will be a function from N to N, or from
codings to nodes, such that each node has countably infinite many inverse
elements (codings). For example, we can set

‘n codes x’ iff ‘(∃y ≤ n) (n = 2y(2x+ 1))’. (4.2)

Definition. Define in PA the function F as follows: Set F (0) = 0. Assume
that F (n) = x, and F has been defined for every m ≤ n. Define F (n+ 1) as
follows:

1. Suppose that n codes an element y in W ∪ {0} and that xRy. If
rank(y, n) ≤ ω, define F (n+ 1) = y.

2. Suppose that n codes an element y inW∪{0}, ¬xRy, and xSy. Suppose
further that rank(y, n) < rank(x, n). Then rank(y, n) < ω, and from
the fact above, rank(y, n) < n. But F has already been defined for
all values up to n. So rank(y, n) = a, for some a. If aRy, then define
F (n+ 1) = y.

3. If neither of these hold, define F (n+ 1) = 1.

Definition. Define in PA the constant L as:

1. If F has a limit, define L = the limit of F ,

2. Otherwise, define L = 0.

Despite the apparent circularity of the definition of the function F and
its limit L, we can nonetheless obtain a function which satisfies all these
conditions through the Diagonal Lemma 3.

4.2.2 Properties of the Function F

Notation. Boldfaced notation for numerals in PA will be omitted where the
meaning is clear from context. For instance, we will write Con(PA+(L = x))
in place of Con(PA + (L = x)).

Theorem 29. F is a primitive recursive function and L is a definable con-
stant of PA such that PA proves the formalizations of the following state-
ments:

(¬S1) For all m,n, if m ≤ n, then F (m)SF (n),
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(¬S2) L is the limit of the function F : ω → W ∪ {0},

(R) For all x, y in W ∪ {0}, if L = x and xRy, then Con(PA + (L = y)),

(¬R) For all x in W , if L = x, then ¬Con(PA + ∃y : (L = y) ∧ ¬xRy), and

(S) For all x in W ∪ {0}, if L = x, then for all k, PA proves that for all
y, z ∈ W ∪ {0}, if xRz and ySz, then Con(PAk + (L = z)).

Proof. We can verify that the function F is primitive recursive based on its
definition.

Now work in ACA0 through the proof.

(¬S1) According to which of the three clauses of F is satisfied, exactly
one the following holds: F (n)RF (n+1), F (n)SF (n+1) or F (n) = F (n+1).
In all cases we will have F (n)SF (n + 1), as both S is reflexive and R ⊆ S
by the definition of S in ILM-models. That the claim holds follows from
repeated applications of this fact.

(¬S2) By the definition of simplified ILM-models, the relation R is con-
verse well-founded, which means that there is some bound k for the frame
such that every R-chain has length ≤ k. Furthermore because of the re-
lation xSyRz ⇒ xRz, any set of R-jumps interspersed with S jumps (e.g.
x1Rx2Sx3Rx4) will be joined into a chain of consecutiveR-jumps (e.g. x1Rx2Rx4).
Therefore F can only make at most k R-jumps, whether consecutive or not.
So eventually F will only be making S-jumps. But by the definition of F ,
an S-move from x to y will only take place only when the rank of y (at all
stages > n) is smaller than the rank of x (at stage n). Then if F did not have
a limit, we would have an infinitely descending, definable sequence of ranks
(i.e. integers). Absurd. In other words the process defined by the function
F peters out eventually as both R and S-jumps must come to an end.

(R) From the fact R is converse well-founded, it is an easy consequence
that R is not reflexive. So if xRy, then x 6= y. For a contradiction, assume
that xRy, L = x, and that PA +L = y is not consistent. Let n be such that
n codes y and n is so large that:

1. F has already reached its limit L at stage n, and

2. There is a proof of L 6= y from PAn with Gödel number less than n
(thus rank(y, n) < ω).
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That some number satisfies 1. follows from the assumption that L = x. That
some number satisfies 2. follows from the assumption that PA + L = y in
not consistent. For both these properties, if n satisfies the property, then all
numbers greater than n also do. Then together with the fact that our code
(4.2) is infinitely repeating, we have a single n that jointly satisfy the desired
properties. But what we have described are exactly the conditions needed
for an R-jump from x to y according to the definition of F . Then the limit
L 6= x, contrary to our assumption that L = x. End of contradiction. So in
fact PA + L = y is consistent, as desired.

(¬R) By assumption, L = x. Now consider any k such that x = F (k).
From the definition of F and the fact that F moved to node x (as L = x),
we conclude that rank(x, k) < ω, and hence rank(x, k) ≤ k. Because we
are working in ACA0, we can employ model-theoretic notions. So for a
contradiction, assume that there is a model Y of PA and an element y of Y
such that:

Y |= L = y ∧ ¬xRy. (4.3)

As x = F (k) is a Σ1-sentence and the fact that x = F (k), we have Y |= ‘x =
F (k)′. Then we can conclude that k is a standard element of Y . By (¬S1),
we have that Y |= xSy.

Now, in Y consider the last step taken by F before reaching y. In other
words, consider the n,w such that F (m) = w, w 6= y, and ∀n > m(F (n) > y).
Since by assumption L = x, then n (chosen as the penultimate step before
the limit in the model Y) must be a nonstandard element of the model Y .
As Y |= n > k, F (k) = x, and F (n) = w, by (¬S1) we have Y |= xSwSy.
Also wRy is impossible, as it would imply (by xSwRy ⇒ xRy) that xRy,
and hence Y |= xRy, contrary to our assumption that Y |= ¬xRy. So ¬wRy.

Now let a = F (rank(y, n)). As ¬wRy, then by the definition of F and
the assumption that L = y, we must have that F moved from w to y via an
S-move. Hence we have that Y |= aRy. Now consider rank(y, n). If we had
Y |= k ≤ rank(y, n), then by (¬S1) we would have that Y |= xSaRy, and
hence Y |= xRy (by xSwRy ⇒ xRy again). But this a contradiction to our
assumption that Y |= ¬xRy.

If, on the other hand, Y |= k > rank(y, n), then Y |= ¬Con(PAk+L = y).
This holds because we defined rank(y, n) = k to mean that there is a proof
in PAk of L 6= y of length < n. But this again is a contradiction; because
we picked k to be standard, the Reflection Theorem 5 guarantees that PA
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proves the consistency of every finite fragment of itself. End of contradiction.
So given the assumption of the claim, we now have (stated outside PA)
that: ¬Con(PA + ∃y : L = y ∧ ¬xRy), as desired. Note that our original
k defined as any stage that y = F (k) became the size of PAk such that
Y |= ¬Con(PAk + L = y).

(S) Assume that L = x. Fix a standard natural k. For a contradiction,
assume that PA does not prove the consequent of (S). Then there is a model
M of PA with two elements y, z such that M |= L = y ∧ xRz ∧ ySz ∧
¬Con(PAk + (L = z)). But then M sees that rank(z, k) ≤ k, and hence for
sufficiently large m, rank(z,m) ≤ k. (In other words this last equation states
that there is a proof of L 6= y with size less than k. This follows from the last
conjunct above and the fact that rank(z,m) is non-increasing for fixed m).
By reflection, the fact k is standard, and thatM models PA+L = y, we have
that M is a model of PAk + L = y. Hence, M |= ∀m(rank(y,m) > k). To
reach a contradiction, we will now show that F moves to z, contradicting the
fact thatM |= L = y. Let n be large enough so that F has reached its limit
y at stage n, n codes z, and rank(z, n) ≤ rank(y, n). We will want to show
thatM |= F (n+ 1) = z. Let r ∈M be such thatM |= rank(y, n) = r. We
can compute, outside of the model, the (not necessarily unique) node a that
the function F reaches at step r, i.e. an a such F (r) = a. Since L = x, from
property (¬S), we have that aSx. By the absoluteness of Σ1 statements, we
have that M |= aSx. From a formalized version of the ILM-frame property
aSxRz =⇒ aRz, we have that that M |= aRz. But now all the conditions
are satisfied for F to make an S move from y to z at stage n (cf. part 2. of the
definition of F ). ThenM |= F (n+1) = z, which is the desired contradiction
So, in PA, under the assumptions above, we have that for all k, PA proves
that for all y, z ∈ W ∪ {0}, if xRz and ySz, then Con(PAk + (L = z)).

This ends the proof of Theorem 29.

Remark 30. What we have just shown in (S) can be alternatively written as:

ACA0 ` ∀x(x ∈W ∧ x = lim(f) (4.4)

→ ∀k(p∀y, z, (y, z ∈W ∧ y = lim(f) = y ∧ xSz ∧ yRz
→ ¬Bewk(pz 6= lim(f)q)q ∈ PA))

Remark 31. (Outside PA) Since ∀x ∈ W (¬xRx), property (¬R) implies that

∀x ∈ W (PA + L = x ` ¬Con(PA + L = x)) (4.5)
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Then in the intended model ω of number theory, the limit L cannot be any
node in W . Combining this with (¬S) that F is a function on W ∪ {0}, we
get that in the standard model the limit L is 0.

By property (R) and by how we adjoined the node 0 to our model so that
0Ry for all y in W , we have that the standard model satisfies, for all y in W

Con(PA + L = y) (4.6)

We have that if a particular instance of formula (4.6) is satisfied in the
standard model for an element y, then there is a model of PA + L = y. But
we have formula (4.6) for each y ∈ W . So for each y ∈ W , PA + L = y has
a model, and hence:

for each y ∈ W , PA + L = y is consistent with PA. (4.7)

4.2.3 The Induced Realization

We will now define the induced arithmetical realization ∗ such that if 1 1 A,
then PA 0 A∗ The realization ∗ will be defined relative to the constant L,
which in turn depends on the model W.

Definition. Define the induced arithmetical realization ∗ so that it is an
arithmetical interpretation and for atomic A, A∗ is the sentence of PA is a
formalization of the following:

‘∃x ∈ W ∪ {0} : L = x ∧ x  A’

Remember that ∗ will commute with propositional connectives and that
(A�B)∗ = InterpPA(pAq, pBq).

4.2.4 Properties of F Imply the Main Result

Definition. Let C be a formula in L(�). We say that the realization ? is
faithful on C iff, in PA, for all x ∈ W , we have:

1. if x |= C and L = x , then C?, and

2. if x 6|= C and L = x, then ¬C?.

Call the first condition faithful 1 and the second condition faithful 2.
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Lemma 32. For all C in L(�), PA proves that the induced interpretation ∗
as defined in Definition 4.2.3 is faithful on C.

Proof. Work in PA. We will show that each way of building a formula C
preserves faithfulness (i.e. a proof by induction on the complexity of C).
The interpretation ∗ is faithful 1 on ⊥ vacuously and faithful 2 by the fact
that for all x, x 6|=⊥. It is also faithful on C atomic (which closely follows
from the definition of ∗). Next, ∗ is faithful on boolean combinations of
formulas ∗ is already faithful on. For example, ∗ is faithful on A→ B if ∗ is
faithful on both A and B. This follows from observing that ∗ was defined to
distribute over boolean combinations. As ILM ` 2A↔ ¬A� ⊥, we have: ∗
is faithful on 2A assuming it is faithful on A if and only if ∗ is faithful on
A � B assuming it is faithful on both A and B. So we only need to check
the inductive case A�B.

Proposition 33. (PA) If x |= A�B and L = x, then C∗.

Work in ACA0 to formalize model-theoretic notions. Suppose that x ∈
W , L = x, and x |= A�B. We must prove that (A�B)∗ which is shorthand
for ‘PA+A∗ interprets PA+B∗’, with A∗ and B∗ as defined in Definition 4.2.3.
Assume for contradiction this is not the case. Then by Theorem 12, there is
a model Y of PA + A∗ that has no end-extension Z that models PA +B∗.

Claim 1. There is an element y ∈ Y such that Y |= xRy ∧ y |= A.
Take y to be the unique element such that Y |= L = y. As x ∈ W ,

L = x, and Y |= L = y, by property (¬R), we have that xRy. Now use
the induction hypothesis: PA ` ‘I is faithful on A′. Note that this induction
hypothesis was assumed outside of PA, yet we wish to use it inside of PA.
This issue can be taken care of seeing that this is a Σ1-assertion, namely
the fact that something is provable in PA, and so will hold inside of PA as
well. As Y |= PA, consequently Y |= ‘I is faithful on A′. Hence using the
contrapositive of the second part of faithfulness, Y |= A∗ (by construction),
and Y |= L = y (by above), we have that Y |= (y |= A). This completes the
claim that there is an element y ∈ Y such that Y |= xRy ∧ y |= A.

Now, in ACA0, we are assuming x |= A � B. But this is Σ1, so it must
hold in all models of PA. In particular it holds in Y , so Y |= A � B. We
can use the requirement on ILM-frames imposed by � inside Y , i.e. that
A�B ⇐⇒ (∀y)(y |= A ∧ xRy =⇒ ∃z(xRz ∧ ySz ∧ z |= B)). Then, along
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with the fact that Y |= xRy ∧ y |= A, we can conclude that there exists a
z ∈ Y such that Y |= xRz∧ySz∧z |= B. As L = x, Y |= L = y∧xRz∧ySz,
by (S), we have that for all k, Y |= Con(PAk + L = z). So there is an end-
extension Z of Y such that Z |= PA + L = z, by Theorem 13 above.

We will now show that Z models PA + B∗. As ‘z |= B′ is a Σ1-assertion
that holds in Y and Z is an end-extension of Y , Z |= (z |= B). Now, using
the induction hypothesis: PA ` ‘I is faithful on B′ and reasoning as above,
we have that Z |= ‘I is faithful on B′. Combining this with Z |= L = z
(construction of Z) and Z |= (z |= B) (above) gives that Z |= B∗. We
assumed that no model of PA +A∗ has an end extension which is a model of
PA+B∗, but we have found that Y does. Hence, PA+A really does interpret
PA +B. In other words C∗, and we are done.

Proposition 34. (ACA0) If x 6|= A�B and L = x, then ¬C∗.

Continue working in ACA0. Suppose that x ∈ W , x |= ¬(A � B) and
L = x. We must now prove that ¬(A�B)∗. Remember this denotes that
PA + A∗ does not interpret PA + B∗ by how we defined the realization ∗.
By Theorem 12, to prove ¬(A � B) it will be enough to find a model Y of
PA +A∗ that has no end-extension Z that models PA +B∗. First note that
the first and second suppositions jointly guarantee that there is a witnessing
y in W such that

xRy ∧ y |= B ∧ ∀z ∈ W [(xRz ∧ ySz)→ z |= ¬B]. (4.8)

We will now show that any model Y of the sentence L = y will be a model
of PA + A∗ that has no end-extensions Z that model PA + B∗. That such
a model exists follows from L = x (assumption), xRy (above), and property
(R) jointly implying that Con(PA +L = y). Hence PA +L = y has a model,
say Y (by the formalized version of the soundness of PA). The induction
hypothesis here is: PA ` ‘I is faithful on A’. Reasoning as above concerning
the induction hypothesis, we have that Y |= ‘I is faithful on A’. Notice that
as ‘y |= A’ is a true Σ1-assertion (i.e. it holds in the standard model of
arithmetic), then it will be true in all models of PA, including Y . So Y |=
(y |= A). Therefore,

Y |= L = y ∧ y |= A ∧ ‘I is faithful on A’. (4.9)

So, we have that Y |= A∗ by faithfulness, and hence that Y |= PA + A∗.
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We want to prove now that no end-extension of Y models PA + B∗.
Suppose for contradiction that there is an end-extension Z of Y such that
Z |= PA +B∗. We first prove:

Claim 2. Suppose there is a z ∈ Z such that Z |= L = z. Then Z |= z ∈
W ∧ xRz ∧ ySz.

Proof: By construction of Y , Y |= L = y. By the specification of L as
the limit of the function F , we have that Y |= L ∈ Range(F ). So Y |= (y ∈
Range(F )) by substitution from the previous equation. Since Z was assumed
to be an end-extension of Y , by Theorem 10, Z |= y ∈ Range(F ). By the
same theorem we have that Z |= xRy.

Then from the assumption of the claim that Z |= L = z along with
property (¬S) gives us that Z |= ySz. Combining with above, we have
Z |= xRySz. By the property (¬ R), we have that Z |= xRz. We also need
to show that z 6= 0, and hence z ∈ W ∪ {0}. We know that R is always
increasing in the sense that if aRb, then a < b. Then as x ∈ W ∪ {0}, z 6= 0.
Hence z ∈ W (not simply z ∈ W ∪ {0}). This proves the claim that if there
is a z ∈ Z such that Z |= L = z, then:

Z |= z ∈ W ∧ xRz ∧ ySz (4.10)

Now to finish the proof, by our choice of y as the witness that Y 6|= A � B,
we have that:

∀w ∈ W [(xRw ∧ ySw)→ w |= ¬B] (4.11)

This assertion is primitive recursive, so it much be satisfied in the model Z.
As the function F is formalizable in the model Z and F always has a limit,
we have that for some z ∈ Z, Z |= L = z. We will force a contradiction
by considering what happens at the node z. Apply equation (4.10) above to
whatever this z is to obtain Z |= z ∈ W∧xRz∧ySz. Applying formula (4.11)
to z, we find that Z |= (z |= ¬B). Combine this with above to get:

Z |= (L = z ∧ z |= ¬B) (4.12)

Now consider the induction hypothesis: ‘PA is faithful on B’. Again rea-
son that this must hold in PA even though we first assume it outside of PA.
Take the second faithfulness condition: ‘if z |= ¬B and L = z, then ¬B∗’.
As this holds in PA, it must be satisfied by any model of PA, including Z.
Reason in the model Z using formula (4.12) to conclude that Z |= ¬B∗.
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Contradiction. We have assumed that Z is an end-extension of Y such that
Z |= PA + B∗. So PA + A∗ does not interpret PA + B∗. In other words,
¬(A � B)∗, as desired. This completes Part 2, and we are done with the
proof of Lemma 32 that ∗ if faithful on all modal formulas.

Now we are in position to finish the proof of the Arithmetical Complete-
ness Theorem:

(Outside of PA) If ILM 0 A, then by the Simplified Model Completeness
Theorem 23, there is a ILM-model W, with root b, such that b |= ¬A. As
the model is provably primitive recursive, we also have that PA ` b |= ¬A.
From the second faithfulness condition, we have:

PA ` ‘∀x ∈W(x |= ¬A ∧ L = x)→ ¬A∗’ (4.13)

Working with the assumption above that PA ` b |= ¬A, we get PA `
L = b→ ¬A∗. Then by the deduction theorem we then have that

PA + L = b ` ¬A∗ (4.14)

By remark (31), for all x, PA+L = x is consistent, and hence has a model.
In particular, PA + L = b has a model, sayM, such thatM |= PA + L = b.
Then, dropping L = x from formula (4.14), we have:

M |= ¬ A∗ (4.15)

But anything that a model of PA satisfies (e.g. A∗) cannot be disproved by
PA. Hence PA 0 A∗, and we are done. We now have both the Arithmetical
Soundness of ILM and the Arithmetical Completeness of ILM. Therefore we
have the Main Result, and we are done.
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