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Abstract

We applied a variety of parametric and non-parametric machine
learning models to predict the probability distribution of rainfall based
on 1M training examples over a single year across several U.S. states.
Our top performing model based on a squared loss objective was
a cross-validated parametric k-nearest-neighbor predictor that took
about six days to compute, and was competitive in a world-wide com-
petition.

1 Motivation

Today water is an essential commodity, for growing food, providing drinking
water, and countless other uses. As climate change progresses, past historical
records of rainfall totals may not be altogether great estimates of future
rainfall total. So how can we tell, how much rain actually fell? One option
is direct measurement of rainfall total, the thing we really care about, via
rain gauges. However these are expensive and limited in time and location.
An alternative source is information from radar arrays, which is cheap and
abundant. But currently this alternate approach suffers a big drawback, in

∗Email: adam@math.berkeley.edu, adam.lesnikowski@gmail.com

1



that the existing algorithms to infer actual rainfall total from radar data
do not perform that well. As an example, some current algorithms actually
predict negative rainfall totals some the time, which is clearly an impossible
total accumulated rainfall prediction. Furthermore for some downstream
agricultural and climate models, having a probabilistic density estimate is
desired, instead of the point prediction the currently used algorithms provide.
Hence there is a need to squeeze as much useful data from the clouds of data
as possible, meteorological pun intended. The machine learning problem,
then, is given radar measurements for a location and time, such as radar
reflectivity, precipitation type, and average precipitation shape, predict a
probability density of how much rain fell. This is the challenge that we
address here.

2 Problem Setup

2.1 The Data Set

The data set consists of 1,126,694 training points. Each data point is a
collection of numerical radar features collected in one hour for some particular
location. These locations vary amongst several midwestern states in the
United States, and were taken between April and November 2013. The data
set provides no location or time features, and were shuffled, so that there is
no immediate way to recover location or time features.

There are 19 provided features, with three of these features being rain
rates predicted from three current algorithms. These three past algorithm
features, RR1, RR2, and RR3, are respectively, the ‘HCA-based’, ‘Zdr-
based’, and ‘Kdp-based’ algorithms. The other 16 features are given as time
series numerical data. An example data point could have its ‘TimeToEnd’
feature s ‘58.0 55.0 52.0 49.0 41.0,’ indicating radar information taken at 58,
55, . . . , 41 minutes from the end of the hour. For this same row, the features
‘Reflectivity’ as ‘0.0, 0.0, 1.2, 4.5, 0.0’ and ‘RR1’ as ‘0.0. 0.0, 2.2, 0.3, 0.0’
mean these measurements taken at the time points in the ‘TimeToEnd’ se-
ries. The label for each row is one float number, the amount in mm of rain
collected for that hour.

The test set consists of 630,521 points. The test set draws from the same
collection of radars covering the same region, but in the next year, 2014. It is
not indicated whether the test points were drawn according to the same time
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or location distribution as in the training set for 2013. For the online Kaggle
competition, submissions are predictions of the probabilistic distribution of
the hourly rain total. Each row of the submission is a list of values P (y ≤ Y ),
for Y integer values 0, 1, 2, . . . 69, and y the rainfall total, in mm.

2.2 The Evaluation Function

Each submission matrix A with rows consisting of entries Pr(y ≤ 0), Pr(y ≤
1), . . . , Pr(y ≤ 69) is evaluated according to the function

Score(A) =
m∑
i

n−1∑
j=0

(Pr(yi ≤ j)−H(j − yi))2,

for m the number of test points, n the number of bins, in this case 70,
Pr(yi ≤) our predicted probability, yi the true label for the ith row, and
H(x) the Heavyside step function, which is 1 for x ≥ 0 and 0 otherwise.

The score can be thought of as the squared loss, averaged across all the
data points and bins, either from 0 if the bin label is less than the true label, or
1 if the true label is less than the bin label. For instance a perfect prediction
for the true label of 2.5 would be the row 0, 0, 0, 1, 1, . . . , 1 corresponding
to Pr(y ≤ 0) = Pr(y ≤ 1) = Pr(y ≤ 2) = 0 and Pr(y ≤ 3) = · · · =
Pr(y ≤ 69) = 1. As we are seeking to minimize a squared loss function, and
will not in general have complete certainty in our predicted label, so we will
‘hedge our bets’ with each prediction, and predict according to our estimated
probabilities of the test point landing in each of the seventy bins.

2.3 Model Selection for this Problem

The relatively large amount of training points, about 1 million, and the low
amounts of provided features, about 30, put us in a situation where m >> n,
for m the number of training samples, and n the number of features. This
suggests that overfitting should be less an issue with this data set than with
smaller data sets. For parametric models, if we adopt the rough rule of thumb
that 15-30 data points are enough to train a model with acceptable variance,
1,000,000 data points should be enough to train models with roughly 33,000
- 66,000 parameters. We note that this rule of thumb is only a heuristic,
and we explored the effect of training set size on our parametric model to
see if this would lead to improved performance whenever possible. Given
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the somewhat large amount of training points and test points, classifiers
with algorithms that scale well were preferred in exploring classifiers. Unlike
problems in computational vision or audio, feature selection does not seem to
be a major issue with this data set, hence classifiers such as neural networks
were not explored. For our k-n neighbor approach, as the number of features
is relatively small, while the number of training and test samples is relatively
large, we prebuilt a k − d tree to aid to make the problem computationally
efficient.

2.4 Dealing With Missing Data

One major issue with this data set, and a vexing one in general is, how
to deal with missing data. Should we ignore these data points, or to fill
them in in some coherent way? For instance, discarding all data points
with some missing value leaves only 200K of the original 1.1M data points,
with the number of missing values per column ranging from 0 to 900K.
The worst offending columns in this regard were the two past algorithm
prediction columns RR2 and RR3. Our approach, unless otherwise noted,
was to discard these two columns, since we are seeking to improve upon the
existing predictors. Then, again unless otherwise noted, we filled in the rest
of the missing column values with zeros. Though heavy-handed, this lead
to competitive classifier performance. More complicated schemes of inferring
missing data, from column averages through building separate predictors for
missing data, were not pursued, though appear as promising ways to improve
performance.

3 Simple Benchmarks

3.1 ‘No Rain’, The Null Hypothesis

Inspection of a histogram of the training set labels gives us that about 87.64%
of the time, the rain label was 0.0 mm. This makes intuitive sense, in that
most of the time, for most regions of the United States, it is not raining,
under the assumption that the training samples were not favorably drawn
from rainy periods or locations. Hence we tried a ‘No Rain’ null-hypothesis
prediction on the test data consisting of all 1 predictions, i.e. the predicted
probability that it rained less than any amount was always 1. Somewhat
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surprisingly this classifier was competitive. With a score of 0.01017651, this
submission ranks tied between places 207 through 220 on the online leader-
board, among 331 total entries, as of May 10, 2015. Clearly this prediction
is only a first-order approximation, but it provides a useful benchmark, and
illustrates the point taking a common-sense look at the data set and simple
statistics about it can provide simple models that outperform more compli-
cated ones.

3.2 ‘Sigmoid’, Provided benchmark

A sample solution, which we dubbed ‘Sigmoid,’ was provided by the com-
petition administrators, with strategy as follows. Consider the RR1 values
of each test point, which were the rainfall rates predicted by the first past
algorithm, average these, normalize by the time period covered by the radar,
and use this point estimate to generate a density function using a sigmoid
function. This solution scores 0.01177621, good for 252 out of 331 entries.
This was worse than the ‘No Rain’ submission, and we think this may be
due to some combination of the following factors: a) normalizing by the time
period of radar coverage instead of the whole 60 minutes overestimates the
hourly rainfall total, since the time series under ‘RR1’ gives hourly rainfall
estimates, b) the sigmoid function is a c.d.f. of a tail-heavy normal-like distri-
bution, and may not model the real distribution of rainfall averages that well,
and c) no estimate of the variance of the data was considered, so the param-
eter of the sigmoid function was constant for each test point, and hence not
sufficiently tuned. Further improvements to this classifier were not pursued.

4 The Histogram Approach

4.1 ‘Histogram’, Sample Set Histogram

The next approach tried was ‘Histogram’ strategy. This was to compute
the proportion of the training set in each of the bins, and use this as the
prediction for each test sample, regardless of the feature given. In this case
we have a parametric model with a naive parameter estimation algorithm
linear in N , the number of training points, and O

(
1
)

complexity for making a
prediction on a test sample, which is computationally excellent. ‘Histogram’
did even better than the two previous solutions, scoring 0.00971225, which
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was good for 184 out of 331. Again this emphasized the value of thinking
about the problem, in particular the squared-loss in the score function, for
making cheaply computed, yet competitive classifiers.

4.2 Inferring Test Histogram

As has been noticed for this and other Kaggle competitions, it is possible
to use a submission scores to infer non-trivial information about the test
sample. For instance, knowing the returned score of the all 1’s ‘No Rain’
submission above, submitting a solution with all 0’s for the first column and
all 1’s elsewhere, and comparing these two scores, it is possible to determine
the proportion of test samples in bin 0. Likewise given 70 total samples, it
would be possible to infer the entire test sample histogram. Furthermore
since for this competition, the scores returned for a submission are based
on about 70% of the test data, these estimates would be quite good. One
iteration of this approach gave an estimated 85.67% of test data in bin 0,
while 87.64% of the training set were in bin 0. This difference is interesting
in its own right in that it might indicate real differences between the 2013
training and 2014 test data, and place an upper bound on the accuracy of any
machine learning algorithm that learns solely on the training data. Further
querying the Kaggle website for test set histogram estimates though were not
further pursued in favor of creating an algorithm that actually learned from
the training data.

5 Ensemble of Previous Algorithms

5.1 ‘Simple Average’

Since each test sample came equipped with three features RR1, RR2, RR3,
the rain rate estimates given by the past algorithms, we tried predictions
based on an ensemble of these past algorithms. We first tried ‘Simple Av-
erage,’ which preprocessed the data by computing the arithmetical mean of
the time series of predictions of each algorithm, and then averaged the three
algorithms’ predictions with equal voting weights. Inspection of the predic-
tions revealed some negative values, so that this simple average was floored
at zero. No statistical estimates of bin probabilities were obtained, so the
point prediction was transformed into a step probability distribution by pre-
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dicting Pr(y ≤ Y ) = 0 for Y less than our estimate at 1 otherwise. The
submission based on this approach scored 0.01080682, which places 224th.
This approach did somewhat better than ‘Sigmoid,’ but also somewhat worse
than either ‘No Rain’ or ‘Histogram.’

5.2 ‘Optimal Voting’

An improvement on ‘Simple Average’ is to give the rain rate estimates given
by the past algorithms differential voting weights. Hence we constructed
‘Optimal Voting,’ based on solving the following optimization problem: given
the training set labels y, features R RR1, RR2, RR3, what are the voting
weights w that minimize the distance between w and y? Taking the distance
to be the l2 norm, this is equivalent to the problem:

min
w
||Rw − y||22,

for R the matrix of past algorithm predictions. Since least squares can
be overly sensitive to outliers, we pre-processed the data by throwing out
outliers. In our case, we used the world record rainfall rate over one hour
as an a priori bound, which as of 2015 is 305mm in one hour, recorded in
Holt, Missouri in 1947. These outliers were suspected to be gauge errors.
The coefficient obtained for RR1 was larger than the other coefficients by
roughly three order of magnitude, and were insensitive to retraining based
on randomly selecting subsets of the data. This is some evidence that RR1
is the best predictor of the three past algorithms. ‘Optimal Voting’ scored
0.01014877, good enough for 206th, beating both ‘Sigmoid’ and ‘Sample Avg’
by good margins, ‘No Rain’ by a small margin, but doing worse than ‘His-
togram’. We note that an immediate extension to these two ensemble ap-
proaches is to get good statistical estimates of the probabilistic distribution
of the rainfall total, and not just using step distribution based on a point
prediction, though this was not pursued in this report.
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6 Multi-Class Logistic Regression Predictors:

A Parametric Approach

6.1 The Setup

To obtain a probability distribution estimates, we fitted parametric models
to the data, in this case multinomial logistic regression models. Logistic re-
gression models take the log odds of each class relative to some reference class
as a linear function of the feature vector, so that these are a particular kind
of generalized linear models. In the multinomial setting, once parameters θi
are estimated, the probability class j among k class is given as

exp(θjx)

1 +
∑k

i exp(θix)
,

where each feature vector is bundled with a constant number to allow
fitting a constant bias, and normalized by the denominator to give some
probability estimate between 0 and 1. The reference class, whose choice does
not matter, has probability prediction given by replacing the above fraction
by 1. The parameters are fit by maximal likelihood estimation, which amount
to solving a numerical optimization problem by, for instance, the Newton-
Raphson method. Fitting for k classes and n features amounts to finding
estimates for roughly k · n parameters.

6.2 Challenges

We did not obtain promising results from fitting our logistic regression. Re-
sults from our logistic regression model were worse than simple benchmarks.
Increasing training set size did not seem to help much, which seemed to use
like a sample size saturation effect. Adding L1 regularization did not help
much either. Our diagnosis is that this logistic regression model appeared
to be predicting equal probabilities for the first few bins, so it suffered a big
score hit due to this. Proposed possible fixes include try other kinds of regu-
larization, another numerical solver, or randomizing initial starting points in
MLE search, though we did not have the resources to pursue these additional
avenues.
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7 Nearest Neighbors Classifiers: A Non-Parametric

Approach

7.1 The Setup

The k-nearest neighbors algorithm, on a high level, finds the k nearest points
to a test vector, and assigns the test vector as some function of its neighbors’
labels. In our case, we estimate the probability distribution of the test point
label into the 70 bins by tallying the proportion of the neighbor’s labels that
fall into each bin. Hence this is a kind of ‘local’ extension of the histogram
approach above, where we are taking histograms of only the test point’s
nearest neighbors. Given that our test sample is about 600K points, and we
have a relatively small number of features, we first built a k-d tree based on
the training data, which then allows us to perform much speedier test sample
predictions.

7.2 Finding Optimal K’s

To find an optimal k value, we randomly split off a training set of 33,000
points and a validation set of 100,000 points from the training data. This
asymmetry of sizes was a rough guess given the relative costs associated
with k-d tree construction versus test sample evaluation. Iterative searches
for k values produced the following figure of a U shaped performance curve.
Convolutions windows of around 150 performed best, with smaller values in
general not providing enough context, and large values washing out too many
details. See Figure 1.

7.3 Effect of Training Set Size

Once a nearly optimal k was identified, we measured the effect that increasing
the training set size had on classifier score on a 100,000 point validation set
for this particular k. We searched by factors of

√
(10) from 3.33e2 to 1.00e5

and found performance increased monotonically with larger training set sizes.
One salient feature of this graph is that large initial gains in performance
eventually gave way to much smaller later gains, so that the model seems
to have some a threshold effect as data size increases. See Figure 2. In
particular, we observed less than a unit increase in score performance for a
unit log increase in training set size. One possible explanation for this is that
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Figure 1: Finding Optimal k in Nearest Neighbors
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the classifier is approaching the Bayes error. Predictions on the test set were
carried out using the 100,000 point training set on the far right end of the
graph.

7.4 Performance

For our near optimal k of 150 and training set size of 100,000, we obtained a
validation set score of 0.00857948. A score of 0.00857948 is much better than
all the other algorithms tested, would be good enough for 73 world-wide out
of 331 in the Kaggle competition, placing it in the top 25% of submissions
world-wide.

Further improvements are expected to give more gains. First among these
is that we have a training set size of 1 million to build a bigger, better k-d
tree, though this effect is expected to be limited as noted above. Another
approach is parameter optimization, in particular p, the lp notion of distance
used in the nearest neighbor search. A further avenue towards improvement
is filling in missing data in some more intelligent way than as was done simply
with zeros, for instance with either column means or medians. We hope to
pursue all of these avenues.

8 Summary of Results

Figure 3 summarizes the scores and ranking for the various classifiers tried.
Nearest neighbors was the best classifier tested, followed by ‘Histogram’.

9 Conclusions

9.1 Further Directions

9.1.1 More Derived Features

An immediate area for further exploration is a richer set of derived features
from the given time series features. Only series averages were computed as
derived features, and this is suspected as one bottleneck in predictor perfor-
mance.
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9.1.2 LDA, QDA

Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis
(QDA) are two further parametric models to explore, with QDA providing
greater decision boundary flexibility. Both approaches however assume more
than Logistic Regression models do, in particular a Gaussian distributions
of labels, and suffer in performance to varying degrees when this assumption
does not hold.

9.1.3 Other ML Methods, SVM’s, SVR’s, Neural Networks

A whole slew of other machine learning approaches could be applied to these
data. Support vector (machine) regressors, or SVR’s, stand out, given their
computational efficiency and other favorable theoretical features. Neural
networks would be intriguing to explore, in particular their ability for auto-
matic feature detection. An approach for using classifiers like SVM’s in this
problem to produce probability distributions is sketched below.

9.1.4 From Classifiers to Probability Distribution Estimators

One standard way to turn classifiers into regressors is to create many classi-
fication labels. Another idea for this problem is to use classifiers to update
some prior probability density estimates: First we take some posterior proba-
bility density estimates drawn from the training histogram or from a nearest
neighbor search. Then we update the estimate based on what the classifier
predicts. The strength of the update can be take as a tunable parameter
optimized through cross-validation. One concrete way to think about this
update would be that the posterior probability density estimate is 100 votes
about which bin the test sample is at. If a classifier predicts the test sample
is in bin x, then add r many votes for bin x.

9.1.5 Ensemble of Best Performing Models

One last approach is always to take an ensemble of all the best performing
classifiers from each of the above approaches.
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